期刊文献+

基于流量负载自适应的时间分层分组抽样 被引量:1

Time Stratified Adaptive Packet Sampling Based on Traffic Load
原文传递
导出
摘要 高速网络中,流量抽样测量技术是一种重要可扩展的解决方案,其中NetFlow在流量测量中有着广泛的应用。针对NetFlow的缺陷提出了一种基于流量负载自适应的时间分层分组抽样算法,主要采用了预定义测量误差、时间分层分组抽样、自适应预测流量负载的方法,该抽样测量算法具有以下优点:抽样方法简单、易于实现,抽样概率自适应于流量负载的变化,平衡了资源的消耗量和准确性。并基于实际互联网数据进行了实验比较,结果显示:该方法具有简单性、自适应性、资源可控性的同时不会失去准确性。 The technique of traffic sampling measurement is an important scalable solution in high-speed network.NetFlow is one of the applications which is widely deployed for traffic measurement.However,the sampling method of NetFlow has shortcomings.In order to overcome those deficiencies,a novel sketch called time stratified adaptive packet sampling was proposed based on traffic load.The proposed sketch adopts the following methods:bounding sampling error within a pre-specified tolerance level,time stratified sampling and predicting traffic load adaptively.The easily-implemented packet sampling method presented can not only automatically adapt the sampling rate to traffic variety,but also give the right tradeoff between resource consumption and accuracy for all traffic mixes.Experiments were conducted based on real network traces.Results demonstrate that the proposed method can achieve simplicity,adaptability and controllability of resource consumption without sacrificing accuracy compared with other sampling methods.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第23期7421-7427,共7页 Journal of System Simulation
基金 国家自然科学基金(60572042) 国家重点基础研究发展规划973(2007CB307102)
关键词 流量测量 时间分层分组抽样 自适应预测 流量负载 NETFLOW traffic measurement time stratified packet sampling adaptive prediction traffic load NetFlow
  • 相关文献

参考文献1

二级参考文献2

共引文献13

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部