期刊文献+

普适变量下的最优控制求解研究

Optimal Orbital Transfer with Finite Thrust Based on Gauss Pseudospectral Method
下载PDF
导出
摘要 研究了普适变量下状态方程的最优控制问题。在消除奇点的轨道根数的基础上,建立了普适变量下适合圆锥曲线求解的摄动方程。利用Gauss伪谱法对摄动方程进行了最优控制求解和仿真验证。计算过程及仿真结果表明,所建立的摄动方程以及所用的Gauss法能够满足各种约束条件,便于对发动机进行控制,且在零倾角轨道情况下不产生奇异。 An optimal control problem based on universal variable is studied. Based on the dynamics equations with the orbital nonsingular elements, perturbation equations including universal variables for solving the conic orbit are established. The optimal control problem of the equations is solved using the Gauss pseudospectral method. At last, an example of orbital transfer with zero inclination is computed and simulated. The simulation results demonstrate that the equations established and the Gauss pseudospeetral method used in this paper are practical and can meet various constraint conditions. Gauss pseudospectral method is not sensitive to orbital transfer initial conditions and the engine is easy to control.
出处 《飞行力学》 CSCD 北大核心 2009年第6期48-50,55,共4页 Flight Dynamics
基金 国家863计划资助项目(2007AA704308)
关键词 GAUSS伪谱法 最优控制 有限推力 轨道转移优化 普适变量 Gauss pseudospectral method optimal control finite thrust optimal orbital transfer universal variable
  • 相关文献

参考文献8

二级参考文献24

  • 1雍恩米,唐国金,陈磊.助推—滑翔式导弹中段弹道方案的初步分析[J].国防科技大学学报,2006,28(6):6-10. 被引量:23
  • 2雍恩米,唐国金,陈磊.高超声速无动力远程滑翔飞行器多约束条件下的轨迹快速生成[J].宇航学报,2008,29(1):46-52. 被引量:34
  • 3罗建军,王明光,袁建平.基于伪光谱方法的月球软着陆轨道快速优化[J].宇航学报,2007,28(5):1119-1122. 被引量:16
  • 4王明光,袁建平,罗建军.RLV再入轨迹机载快速优化[J].宇航学报,2005,26(3):253-256. 被引量:8
  • 5George R. The common aero vehicle-space delivery system of the future the common aero vehicle-space delivery system of the future[ C]// AIAA Space Technology Conference & Exposition, Albuquerque, NM, 1999: 1- 11.
  • 6Betts J T. Survey of numerical methods for trajectory optimization [J]. Journal of Guidance , Control and Dynamics, 1998, 21 (2) : 193 - 206.
  • 7Istratie V. Optimal profound entry into atmosphere with minimum heat and constraints[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Montreal, Canada, 2001.
  • 8Elnagar J, Kazemi M A. Pseudospectral chebyshev optimal control of constrained nonlinear dynamicla systems[J]. Computational Optimization and Applications, 1998( 11 ) : 195 - 217.
  • 9Hui T L, Ping Y J, Qun F, et al. Reentry skipping trajectory optimization using direct parameter optimization method[ C]//14th AIAA/ AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
  • 10Robert T. Trajectory optimization for a fixed-trim reentry vehicle using direct collocation and nonlinear programming[C]//AIAA Guidance, Navigation, and Control Conference & Exhibit. Denver, USA, 2000.

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部