摘要
研究了普适变量下状态方程的最优控制问题。在消除奇点的轨道根数的基础上,建立了普适变量下适合圆锥曲线求解的摄动方程。利用Gauss伪谱法对摄动方程进行了最优控制求解和仿真验证。计算过程及仿真结果表明,所建立的摄动方程以及所用的Gauss法能够满足各种约束条件,便于对发动机进行控制,且在零倾角轨道情况下不产生奇异。
An optimal control problem based on universal variable is studied. Based on the dynamics equations with the orbital nonsingular elements, perturbation equations including universal variables for solving the conic orbit are established. The optimal control problem of the equations is solved using the Gauss pseudospectral method. At last, an example of orbital transfer with zero inclination is computed and simulated. The simulation results demonstrate that the equations established and the Gauss pseudospeetral method used in this paper are practical and can meet various constraint conditions. Gauss pseudospectral method is not sensitive to orbital transfer initial conditions and the engine is easy to control.
出处
《飞行力学》
CSCD
北大核心
2009年第6期48-50,55,共4页
Flight Dynamics
基金
国家863计划资助项目(2007AA704308)
关键词
GAUSS伪谱法
最优控制
有限推力
轨道转移优化
普适变量
Gauss pseudospectral method
optimal control
finite thrust
optimal orbital transfer
universal variable