期刊文献+

一种基于偏微分方程的车辆加速度信号自适应降噪方法 被引量:4

An Adaptive De-Noising Method for Vehicle's Acceleration Signal Based on PDE
下载PDF
导出
摘要 提出一种针对MEMS加速度计信号的基于偏微分方程的自适应降噪方法,该方法不仅能有效克服由于传感器本身原因及车载环境振动噪声带来的影响,获得准确的加速度信号,而且实现容易、实时性好。通过对车辆加速度信号进行建模并叠加真实加速度噪声作为仿真信号,将该方法与选用db6小波基、heursure自适应阈值、4层分解的最佳小波进行降噪性能对比,证明在车辆正常行驶的加速度幅值下,该方法不仅能够取得和小波近似的降噪性能,而且很大程度上减少了运算时间。最后通过对实际车载加速度信号的降噪处理和倾角测量中的应用,再次证明该方法在滤除噪声的同时能够较好体现细节信息,很适合应用在对实时性和准确性要求高的实际工程中。 An adaptive de-noising method was put forward for MEMS accelerometer signal based on partial differential equation. This method can reduce the disturbance caused by vibration of vehicular environment and sensor itself, get acceleration accurately, and have advantages of easy realization and good real-time per- formance. A vehicle 's acceleration signal modeling was set up with real acceleration noises as simulation signals. Compared to the best wavelet in such signal with characters of db6 wavelet base,heursure adaptive threshold, and four decomposed layers, the adaptive de-noising method could perform quite same as wavelet in de-noising, but largely reduce the computation time. Experiments proved above result, while the car was in normal driving conditions. And experiments based on real vehicle acceleration signal and angle measurement proved again that this method could reflect the detailed information effectively while filtering noise, and it was very suitable for practical engineering which needs real-time applications and high accuracy.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第11期1606-1611,共6页 Chinese Journal of Sensors and Actuators
基金 上海市教委创新重点项目资助(09ZZ89) 上海市重点学科和科委重点实验室资助(S30108 08DZ2231100)
关键词 信号处理 车辆加速度信号降噪 偏微分方程 自适应降噪 MEMS加速度计 小波 signal processing vehicle s acceleration de-noising partial differential equation adaptive de-noising MEMS accelerometer wavelet
  • 相关文献

参考文献10

二级参考文献44

共引文献44

同被引文献43

  • 1姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 2LIU Feng.Diffusion filtering in image processing based on wavelet transform[J].Science in China(Series F),2006,49(4):494-503. 被引量:10
  • 3孟宗,戴桂平,刘彬.基于EMD时频分析方法的性能研究[J].传感技术学报,2006,19(4):1029-1032. 被引量:20
  • 4徐涛,王祁.基于小波包神经网络的传感器故障诊断方法[J].传感技术学报,2006,19(4):1060-1064. 被引量:10
  • 5Kim J,Welcome D E,Dong R G,et al.Time-Frequency Characterization of Hand-Transmitted,Impulsive Vibrations Using Analytic Wavelet Transform[J].Journal of Sound and Vibration,2007,308(1 -2):98-111.
  • 6Li Q.Research of Gyro Signal De-Noising with Stationary Wavelets Transform[C] //IEEE CCECE,2003:1989-1992.
  • 7Naser E S,Sameh N.Wavelet De-Noising for IMU Alignment[J].IEEE A&E Systems Magazine,2004:32-39.
  • 8Huang N E,Shen Z,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[C] //Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,1998,454(1971):903 -995.
  • 9Yu Dejie,Cheng Junsheng,Yang Yu.A Fault Diagnosis Approach for Roller Bearings Based on EMD Method and AR Model[J].Mechanical Systems and Signal Processing,2006,20 (2):350-362.
  • 10Flandrin P.Empirical Mode Decomposition aa a Filter Bank[J].IEEE Signal Processing letters,2004:112-114.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部