摘要
The generation and propagation dynamics of multiple optical vortices hosted in a Gaussian beam are experimentally demonstrated by use of the computer-generated holography. Fluid-like motions of the multi-vortex beam are observed owing to the helical phase structure. The multi-vortex beam with identical topological charge presents rotation, which can be suppressed by changing the sign of the topological charge alternately. In addition, the transverse motion control of the multi-vortex is proved by inserting an additional vortex. Finally, rotary and stationary vortex lattices with different periodic arrays are experimentally constructed. The results exhibit potential applications in inducing twisted or stable waveguide arrays and new types of optical traps.
The generation and propagation dynamics of multiple optical vortices hosted in a Gaussian beam are experimentally demonstrated by use of the computer-generated holography. Fluid-like motions of the multi-vortex beam are observed owing to the helical phase structure. The multi-vortex beam with identical topological charge presents rotation, which can be suppressed by changing the sign of the topological charge alternately. In addition, the transverse motion control of the multi-vortex is proved by inserting an additional vortex. Finally, rotary and stationary vortex lattices with different periodic arrays are experimentally constructed. The results exhibit potential applications in inducing twisted or stable waveguide arrays and new types of optical traps.
基金
supported by the Northwestern Poly-technical University Foundation for Fundamental Re-search and the Doctorate Foundation of NPU