期刊文献+

改进的基于光流的鲁棒多尺度运动估计算法 被引量:7

An Improved Algorithm of Robust Multi-Scale Motion Estimation Based on Optical Flow
下载PDF
导出
摘要 基于图像的运动估计是计算机视觉在许多应用中的一项基本任务,其主要目标是尽可能精确地估计场景和物体的运动.文中针对界外值在光流估计过程中会引起不可预期的运动估计结果、严重影响运动估计精度的问题,提出一种改进的鲁棒分层的多尺度运动估计算法.该算法利用图基的双权重函数,自动调节不同残差数据点的权重,去除残差过大的数据点,并采用多尺度金字塔由粗到精逐层迭代,精确地估计运动矢量.实验结果表明:该算法鲁棒性好,能有效地解决遮挡背景和运动不连续而引起的界外值问题,明显地提高运动估计精度. The motion estimation based on image is a basic task in many applications of computer vision. The main goal of it is to estimate the motion of scenes and objects as accurate as possible. In the optical flow estimation, outliers may lead to undesirable results and greatly reduce the motion estimation precision. In order to solve these problems, an improved robust multi-scale algorithm of hierarchical motion estimation is proposed. In this algorithm, Tukey's bi-weight function is used to automatically adjust the weights of data with different residual errors and to remove the data with excessive residual errors, and a multi-scale pyramid is employed to accurately estimate the motion vector by an iteration gradually from coarseness to fine. Experimental results show that the proposed algorithm with strong robustness effectively solves the problem of outliers caused by occlusive background and discontinuous motion and greatly improves the precision of motion estimation.
作者 黄赞 张宪民
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期118-122,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50775073) 广东省教育部产学研结合项目(2006D930304001) 广州市科技攻关项目(2006A10401004)
关键词 运动估计 光流 多尺度 鲁棒性 motion estimation optical flow multiple scale robustness
  • 相关文献

参考文献11

  • 1Horn B K, Schunk B G. Determining optical flow [ J ]. Artificial Intelligence, 1981,17 : 185-203.
  • 2Anandan P. A computation framework and an algorithm for the measurement of visual motion [ J ]. International Journal of Computer Vision, 1989,2: 283-310.
  • 3Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision [ C ]// Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Vancouver: [ s. n. ] , 1981:674-679.
  • 4Nagel H. On a constraint equation for the estimation of displacement rates in image sequences [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(1) :13-30.
  • 5Black M J, Anandan P. A frame work for the robust estimation of optic flow [ C ] //Proceedings of International Conference on Computer Vision. Berlin: [ s. n. ], 1993: 231-236.
  • 6危水根,陈震,黎明.基于梯度光流场计算方法的一种改进[J].计算机工程,2006,32(1):198-200. 被引量:12
  • 7黄士科,陶琳,张天序.一种改进的基于光流的运动目标检测方法[J].华中科技大学学报(自然科学版),2005,33(5):39-41. 被引量:17
  • 8Colliez J, Dufrenois F, Hamad D. Optic flow estimation by support vector regression [ J ]. Engineering Applications of Artificial Intelligence ,2006,19:761-768.
  • 9张泽旭,崔平远,崔祜涛.一种基于方向平滑约束优化的多尺度光流算法[J].高技术通讯,2007,17(2):153-158. 被引量:2
  • 10Stiller C, Konrad J. Estimating motion in image sequences [ J]. IEEE Signal Processing Magazine, 1999, 16:70-91.

二级参考文献18

  • 1Barron J L, Fleet D J. Performance of optical flow techniques[J]. IJCV. 1994, 12(1): 43-77.
  • 2Horn B K, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1): 185-203.
  • 3Juan L, Mattthew M, Naveed S. Performance of passive ranging form image flow[J]. IEEE, ICIP, 2003(9): 929-932.
  • 4Horn B K E Schunk B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17(1-3):185-203.
  • 5Barron J L, Fleet D J, Beauchemin S S. Performance of Optical Flow Techniques[J]. IJCV, 1994, 12(1):43-77.
  • 6Verri A, Girosi E Torre V. Differential Techniques for Optical Flow[J]. Journal of the Optical Society of America, 1990,7(5):912-922.
  • 7Jonathan W B. Improved Accuracy in Gradient-based Optical Flow Estimation[J]. International Journal of Computer Vision, 1997, 25(1):5-22.
  • 8Anandan P.A computation framework and an algorithm for the measurement of visual motion.Inter J Comp Vision,1989,2:283-310
  • 9Singh A.An estimation-theoretic framework for image flow computation.In:Pro 3rd Inter Conf Comp Vision,Osaka,1990,168-177
  • 10Horn B K P,Schunck B G.Determining optical flow.Artificial Intelligence,1981,17:185-203

共引文献28

同被引文献87

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部