期刊文献+

CuO/水纳米流体悬浮液分散性能研究 被引量:6

Dispersion Behavior of CuO/H_2O Nanofluid
下载PDF
导出
摘要 通过在去离子水中添加纳米CuO颗粒,制备一种新型强化传热工质CuO/水纳米流体。采用离子型表面活性剂十二烷基苯磺酸钠(SDBS)、非离子型表面活性剂聚乙二醇6000(PEG6000)对纳米CuO颗粒进行分散,并对其zeta电位、粒度及吸光度进行测量。系统研究超声振动时间、表面活性剂种类和质量分数、pH值等对CuO/水纳米流体悬浮液分散性能的影响。实验结果表明,随超声振动时间的延长、分散剂浓度及pH值的增加,纳米CuO颗粒的分散性均出现先增后降的变化规律;纳米CuO颗粒的分散存在一个最佳超声振动时间、分散剂质量分数和pH值。纳米CuO在悬浮液中的最佳分散工艺条件为:超声振动时间1.5 h,pH=8,wSDBS=0.06%。 CuO/H2O nanofluid was prepared by adding CuO nanoparticles into water, which is a new kind of heat transfer fluid. Based on the measurement of zeta potential, particle size, absorbancy of CuO nanoparticles, the influences of supersonic time, surfactant kinds and concentration, and pH value on the dispersion of CuO/H2O suspension were systematically studied by using such surfactants as ionic polyethylene glycol 6000 (PEG6000) , non-ionic sodium dodeeyl benzene sulfonate (SDBS). The results show that the dispersion of CuO/H2O suspension firstly increases to a maximum and then decreases with the increase of ultrasonic time. It is the same with the increase of surfactant concentration and pH value. The dispersion of CuO nanoparticles exists an optimal ultrasonic dispersion time, dispersing agent concentration and pH value. SDBS is the better dispersant agent among the two kinds of surfactants used in the experiment. The optimal ultrasonic time is 1.5 h the dispersing concentration is 0.06% in mass percent of SDBS and the pH value is 8.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2010年第1期9-12,共4页 Journal of University of Jinan(Science and Technology)
基金 山东省自然科学基金(SZR0708)
关键词 纳米流体 超声振动 PH值 分散剂 分散性 nanofluid ultrasonic pH value surfactant dispersion
  • 相关文献

参考文献11

  • 1CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles[ J]. Asme Fed, 1995,231:99 - 103.
  • 2EASTMAN J A,CHOI S U S,LI S,etal. Ehanced thermal conductivity through the development of nanofluids [ J ]. Materials Research Society Symposium Proceedings, 1997,457:3 - 11.
  • 3LEE S, CHOI S U S, LI S, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles [ J ]. Journal of Heat Transfer, 1999( 121 ) :280 -289.
  • 4WANG X W, XU X F, CHOI S U S. Thermal conductivity of nanoparticle-fluid mixture [ J ]. Journal of ThermopHysics and Heat Transfer, 1999,13 (4):474-480.
  • 5MURSHED S M, LEONG K C, YANG C. Ehanced thermal con- ductivity of TiO2-water based nanofluids [ J ]. International Journal of Thermal Sciences,2005,44 (4) :367 -373.
  • 6XUAN Y M ,LI Q. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Transfer,2000(21 ) :58 -64.
  • 7孙玉利,左敦稳,朱永伟,王宏宇,卢文壮.纳米α-Al_2O_3在水相介质中的分散性能[J].南京航空航天大学学报,2008,40(5):702-706. 被引量:6
  • 8孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响[J].无机材料学报,1999,14(3):465-469. 被引量:79
  • 9郝成伟,吴伯麟.纳米α-Al_2O_3的制备及其悬浮液分散性的研究[J].轻金属,2007(9):9-12. 被引量:1
  • 10李华,朱冬生,王先菊,李新芳.纳米Al_2O_3在水相体系中的分散稳定性研究[J].材料导报,2007,21(F11):33-36. 被引量:8

二级参考文献45

共引文献98

同被引文献77

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部