期刊文献+

Pfaffians and Representations of the Symmetric Group

Pfaffians and Representations of the Symmetric Group
原文传递
导出
摘要 Pfaffians of matrices with entries z[i, j]/(xi + xj), or determinants of matrices with entries z[i, j]/(xi - xj), where the antisymmetrical indeterminates z[i, j] satisfy the Pliicker relations, can be identified with a trace in an irreducible representation of a product of two symmetric groups. Using Young's orthogonal bases, one can write explicit expressions of such Pfaffians and determinants, and recover in particular the evaluation of Pfaffians which appeared in the recent literature. Pfaffians of matrices with entries z[i, j]/(xi + xj), or determinants of matrices with entries z[i, j]/(xi - xj), where the antisymmetrical indeterminates z[i, j] satisfy the Pliicker relations, can be identified with a trace in an irreducible representation of a product of two symmetric groups. Using Young's orthogonal bases, one can write explicit expressions of such Pfaffians and determinants, and recover in particular the evaluation of Pfaffians which appeared in the recent literature.
作者 Alain LASCOUX
机构地区 CNRS
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第12期1929-1950,共22页 数学学报(英文版)
基金 Supported by ANR project BLAN06-2_134516
关键词 PFAFFIANS symmetric group REPRESENTATIONS Pfaffians, symmetric group, representations
  • 相关文献

参考文献25

  • 1Lascoux, A.: Symmetric functions & Combinatorial Operators on Polynomials, CBMS/AMS Lectures Notes 99, 2003.
  • 2Sundquist, T.: Two variable Pfaffian identities and symmetric functions. J. Algebraic Combin., 5, 135-148 (1996).
  • 3Ishikawa, M.: Minor summation formula and a proof of Stanley's open problem. Ramanujan J., 16(2), 211-234 (2008).
  • 4Okada, S.: Enumeration of symmetry classes of alternating sign matrices and characters of classical groups. J. Alg. Comb., 23, 43-69 (2006).
  • 5Ishikawa, M., Okada, S., Tagawa, H., et al.: Generalizations of Cauchy's determinant and Schur's Pfaffian. Adv. Appl. Math., 36, 251-287 (2006).
  • 6Kuperberg, G.: Symmetry classes of alternating-sign matrices under one roof. Ann. Math., 156(2), 835-866 (2002).
  • 7Stroganov, Yu. G.: Izergin Korepin determinant reloaded, arXiv:math. /0409072.
  • 8Young, A.: The Collected Papers of Alfred Young, University of Toronto Press, 1977.
  • 9Desarmenien, J., King, J., Rota, G. C.: Invariant Theory, Young bitableaux and combinatorics. Adv. Math., 27, 63-92 (1978).
  • 10Desarmenien, J.: An algorithm for the Rota straightening formula. Discrete Math., 30, 51-68 (1980).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部