期刊文献+

数字电视译码电路中改进型欧几里德算法 被引量:1

Modified Euclidean algorithm in digital TV decoding circuit
下载PDF
导出
摘要 为了简化数字电视译码电路的复杂性,提出一种改进型欧几里德算法.该算法利用多项式带余除法的相关推论,通过矩阵的列变换来求解关键方程,这样可以快速地得到商式和余式,从而可以减少迭代运算的次数.与传统欧几里德算法相比,该算法在求解关键方程的过程中能够更方便地得到错误值多项式和错误位置多项式,并且能够减少硬件电路的复杂性,提高RS码的译码速度. To simplify the complexity of digital TV decoding circuit, a modified Euclidean algorithm is proposed. The proposed algorithm use the related deduction of division with reminder of polynomials and the key equation is solved by column transformation of matrix. Then the formula of quotient and reminder can be got quickly which can reduce the times of iterative operation. Compared with the traditional Euclidean algorithm, the proposed algorithm can easily get error value polynomial and error locator polynomial in the process of solving the key equation. Moreover, it can simplify the complexity of hardware circuit and improve RS decoding speed.
作者 张天瑜
出处 《武汉工程大学学报》 CAS 2009年第12期73-78,共6页 Journal of Wuhan Institute of Technology
关键词 RS码 多项式带余除法 关键方程 改进型欧几里德算法 列变换 Reed-Solomon code division with reminder of polynomials key equation modified Euclidean algorithm column transformation
  • 相关文献

参考文献12

  • 1Wu Y Q. New list decoding algorithms for ReedSolomon and BCH codes [J].IEEE Transactions on Information Theory, 2008,54(8) :3611 - 3630.
  • 2Krachkovsky V Y, Ashley J J,Williamson C J, et al. Syndrome Reed-Solomon decoding using bit reliabilities [J]. IEEE Transactions on Magnetics, 2008,44(1) :223 - 227.
  • 3Albanese M, Spalvieri A. Two algorithms for soft- decision decoding of Reed Solomon codes, with application to multilevel coded modulations [J]. IEEE Transactions on Communications, 2008, 56(10) :1569 - 1574.
  • 4Kang K. Probabilistic analysis of data interleaving for Reed-Solomon coding in BCMCS [J].IEEE Transactions on Wireless Communications, 2008, 7(10) :3878 - 3888.
  • 5刘军,刘黎志,黄浩.一种无线嵌入式数字卫星接收系统的模块化设计[J].武汉工程大学学报,2008,30(4):99-102. 被引量:2
  • 6刘书,潘成胜,张德育.Mobile Agent在网络系统监控中数据采集的设计与应用[J].武汉工程大学学报,2009,31(3):77-80. 被引量:3
  • 7Lee K, O'Sullivan M E. List decoding of Reed- Solomon codes from a Grobner basis perspective [J]. Journal of Symbolic Computation, 2008, 43(9):645 - 658.
  • 8Chang Y W, Jeng J H, Truong T K. An efficient Euclidean algorithm for Reed-Solomon code to correct both errors and erasures [C]. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 2003:895- 898.
  • 9Chang Y W, Truong T K. , Jeng J H. VLSI architecture of modified Euclidean algorithm for Reed- Solomon Code [J]. Information Sciences, 2003,155 (1- 2) :139 - 150.
  • 10Lee S, Lee H, Shin J, et al. A high-speed pipelined degree-computationless modified Euclidean algorithm architecture for Reed-Solomon decoders [C]. IEEE International Symposium on Circuits and Systems, New Orleans, LA, 2007:901-904.

二级参考文献9

共引文献3

同被引文献10

  • 1Predko Michael , Predko Myke. Digital electronics demystified[M]. New York: McGraw-Hill, 2004.
  • 2Karnaugh Maurice. The map method for synthesis of combinational logic circuits [J]. Transactions of American Institute of Electrical Engineers part I,1953,72(9):593 -599.
  • 3McCluskey E J. Minimization of boolean tunctions [J]. The Bell System Technical Journal, 1956:1417 - 1444.
  • 4McCluskey E J. Introduction to the theory of switching circuits [M]. New York: McGraw Hill, 1965.
  • 5Popov Andrey, Filipova Krasimira. Genetic algorithms synthesis of finite state machines[C]//27th International Spring Seminar on Electronics Technology : Meeting the Challenges of Electronics Technology Progress. Bankya, Bulgaria, IEEE, 2004,3 : 388 - 392.
  • 6Fiser Petr. Minimization of boolean functions[D]. MS. Thesis of Czech Technical University,2002.
  • 7Rudell Richard L. Multiple-valued minimization for PLA synthesis[J]. IEEE Trans. on CAD, 1987,6 (5) : 725 - 750.
  • 8邱建林,王波,刘维富.大变量多输出逻辑函数实质项识别算法[J].计算机工程,2007,33(17):57-59. 被引量:1
  • 9胡国元,胡婧,朱雄伟,孙炜.显微数码互动实验室系统在微生物实验教学中的应用[J].武汉工程大学学报,2010,32(10):103-106. 被引量:13
  • 10庄芸,李晖.软件进程分解方法模式[J].武汉工程大学学报,2010,32(11):91-93. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部