期刊文献+

约束纹理映射的自适应方法 被引量:4

An Adaptive Method for Constrained Texture Mapping
下载PDF
导出
摘要 传统的约束纹理映射方法大都在满足指定的约束条件时破坏了参数化结果的保形性,为此提出一种自适应的约束纹理映射方法.通过迭代最小化一个由保形项和约束项组成的加权能量得到带约束参数化结果,并且以每步更新权重的方式来平衡这两项;在每步迭代时,每个约束点权系数的选取依赖于上次结果中该约束点距指定位置距离的一个单调函数.利用该方法可以在满足指定约束条件的前提下兼顾到结果的保形性.实验结果表明,该方法能够快速、有效地得到较好的纹理贴图效果. Most of the traditional constrained texture mapping methods meet the specified constrained conditions at the cost of sacrificing the parameterization's conformality. In this paper, a new adaptive constrained texture mapping method is proposed. The constrained parameterizations are computed through iteratively minimizing a weighted energy covering both conformal term and constraint term. In order to make them in balance, the weights in the energy are updated step by step. In one iteration step, the weight of each constrained vertex is dependent on a monotone function of the distance from current position of the vertex to its specified location. By this method, the conformality can be well preserved while the constrained conditions are satisfied. Experimental results show that a good texture mapping can be taken quickly and effectively.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第12期1722-1728,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60673006 60533060) 新世纪优秀人才计划(NCET-05-0275) an INBRE grant (5P20RR01647206) from NIH
关键词 参数化 自适应 纹理映射 parameterization adaplation texture mapping
  • 相关文献

参考文献21

  • 1Eck M, DeRose T, Duchamp T. multiresolution analysis of arbitrary meshes [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1995:173-182.
  • 2Floater M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14(3): 231-250.
  • 3Sander P V, Snyder J, Gortler S J, et al. Texture mapping progressive meshes [C2 //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Los Angeles, 2001, 409-416.
  • 4Sheller A, de Sturler E. Parameterization of faceted surfaces for meshing using angle based flattening[J]. Engineering with Computers, 2001. 17(3):326-337.
  • 5Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surfacemeshes[J]. Computer Graphics Forum, 2002, 21 (3): 209-218.
  • 6Floater M S. Mean value coordinales [J]. Computer Aided Geometric Design, 2003, 20(1): 19-27.
  • 7Karni Z, Gotsman C, Gortler S J. Free-boundary linear parameterization of 3D meshes in the presence of constraints [C]//Proceedings of the International Conference on Shape Modeling and Applications, Boston, 2005:268-277.
  • 8Ben-Chen M, Gotsman C, Bunin G. Conformal flattening by curvature prescription and metric scaling [J]. Computer Graphics Forum, 2008, 27(2): 449-458.
  • 9Liu L G, Zhang L, Xu Y. et al. A local/global approach to mesh parameterization [J]. Computer Graphics Forum, 2008, 27(5): 1495-1504.
  • 10Floater M S, Hormann K. Surface parameterization: a tutorial and survey [M] //Dodgson N A, Floater M S, Sabin M A. Advances in Multiresolution for Geometric Modelling. Heidelberg: Springer, 2005:157-186.

二级参考文献25

  • 1彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 2Eck M, DeRose T, Duchamp T, et al. Mutiresolution analysis of arbitrary meshes [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, Los Angeles,1995. 173~ 182
  • 3Floater M S. Parameterization and smooth approximation ofsurface triangulations [J]. Computer Aided Geometric Design,1997, 14(3): 231~250
  • 4McCarteny J, Hinds B K, Scow B L. The flattening of triangulated surfaces incorporating darts and gussets [J].Computer Aided Design, 1999, 31(4): 249~260
  • 5Haker S, Angenent S, Tannenbaum A, et al. Conformal surface parameterization for texture mapping [J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(2): 181~ 189
  • 6Sheffer A, Sturler E D. Parameterization of faceted surfaces for meshing using angle-based flattening [J]. Engineering with Computers, 2001, 17(3): 326~337
  • 7Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surfaces meshes [J]. Computer Graphics Forum, 2002, 21(3):209~ 218
  • 8Levy B. Constrained texture mapping for polygonal meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 417~424
  • 9Tang Y, Wang J, Bao H J, et al. RBF-based constrained texture mapping [J]. Computers and Graphics, 2003, 27(3):415~ 422
  • 10Kraevoy V, Sheffer A, Gotsman C. Matchmaker: Constructing constrained texture maps [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,San Diego, 2003. 326~333

共引文献24

同被引文献33

  • 1彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 2冯结青,赵豫红.均值重心坐标的鲁棒算法及其几何性质[J].计算机辅助设计与图形学学报,2004,16(6):772-776. 被引量:7
  • 3黄超超,凌永顺,吕相银.地形纹理映射方法研究[J].计算机仿真,2005,22(1):209-212. 被引量:11
  • 4PIPONI D,BORSHUKOV G.Seamless Texture Mappingof Subdivision Surfaces by Model Pelting and TextureBlending[C]∥ACM SIGGRAPH 2000 Conference Pro-ceedings.NewYork:ACM,2000.
  • 5ZHENG J J,ZHANG J J.Texture Mapping on IrregularTopology Surface[C]∥Sixth International Conference onInformation Visualisation.London:[s.n.],2002.
  • 6Cacmull Ed.Computer Display of Curved, Surfaces ,Proc.IEEE Cortterence on Computer Graphcs,Pattern Recognition and Data Structure, (1975) , 11-17.
  • 7Blinn J, Newell M. Texture and Reflection in Computer Gen- erated Images, CACM. 19, 10(1976), 542 - 547.
  • 8Blinn J. Simulation of Wrinkled surfaces, Computer Graph- ics. 12, 3 (1978),286-292.
  • 9Gardner G. Simulation of Natural Scenes Using Textured Quadric Surfaces, Computer Graphics 18,3, (1984) 11-20.
  • 10Kajiya J. AnisoCroopic Rcflection Models,Computer Graph- ics. 19, a (1985), 15-21.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部