期刊文献+

基于局部保持判别子空间的ISAR目标识别 被引量:1

ISAR Target Recognition Based on Locality Preserving Discriminant Subspace
下载PDF
导出
摘要 由于目标运动及其所处环境的复杂性,雷达目标数据之间往往呈现出局部的非线性,如果采用传统的线性子空间方法降维,必将会使雷达目标识别性能有所下降,基于以上原因,文章尝试将流形学习的思想应用于逆合成孔径雷达(ISAR,inverse synthetic aperture radar)目标二维像的目标识别。局部保持投影(LPP,locality preserving projections)是一类有效的流形学习算法,但它在构建权矩阵时没有充分利用样本的类别信息。针对此问题,提出了一种称为局部保持判别投影(LPDP,locality preserving discriminant projections)的子空间学习方法,该方法通过构建类内和类间两个权矩阵来描述多类样本数据集的局部几何结构,以使在高维空间中相互靠近的同类数据点在低维嵌入空间中也相互靠近,而不同类的近邻点则尽可能地远离。对三类飞机目标的仿真实验结果表明,与PCA、LDA和LPP等算法相比,LPDP算法具有更好的识别性能。 It is well known that the relationship between different radar targets is often nonlinear due to the complexity of target's movement and environments, so the recognition rate will decrease when the traditional linear dimensionality reduction methods are used. For this reason, the idea of manifold learning is introduced to Inverse Synthetic Aperture Radar (ISAR) 2D image target recognition. Locality Preserving Projections (LPP) is an effective method of manifold learning, but it does not make full use of the class label information when the adjacency matrix is constructed. In this paper, we propose a new subspace learning method called Locality Preserving Discriminant Projections (LPDP). In LPDP, the local geometry of multi-class samples are described by the within-class adjacency matrix and the between-class adjacency matrix, and the data points are mapped into a subspace in which the nearby points with the same label are close to each other while the nearby points with different labels are far apart. The simulated experimental results about three aircraft targets indicate that the LPDP algorithm has better classification performance than those of PCA, LDA and LPP.
出处 《中国电子科学研究院学报》 2009年第6期656-660,共5页 Journal of China Academy of Electronics and Information Technology
关键词 流形学习 局部保持投影 ISAR二维像 目标识别 manifold learning locality preserving projections ISAR Image target recognition
  • 相关文献

参考文献17

二级参考文献45

  • 1周代英.雷达目标一维距离像识别中的最优子空间法[J].电波科学学报,2004,19(6):748-751. 被引量:4
  • 2刘靖,周激流.基于Hermite特征和核函数判决分析的人脸识别[J].光电子.激光,2006,17(1):119-123. 被引量:4
  • 3尹洪涛,付平,孟升卫.基于自适应加权Fisherface算法的人脸识别[J].光电子.激光,2006,17(11):1405-1408. 被引量:14
  • 4黄培康 等.雷达目标特性信号[M].北京:宇航出版社,1993..
  • 5Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery [C]//Proc. SPIE, 2005,5808: 314- 325.
  • 6Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C] // IEEE Conf. Signal Processing Society Workshop, New York, 1999 : 41 - 48.
  • 7Guttman O, Meir R. Nonlinear Fisher discriminant using kernels[C]//IEEE Convention of the Electrical and Electronic Engineers. Israel, 2000: 257- 260.
  • 8Liu Q, Huang R, Lu H, et al. Face recognition using kernel based fisher discriminant analysis[C]//IEEE Conf. Automatic Face and Gesture Recognition, Washington D C, 2002: 205 -211.
  • 9He B, Tong L, Han X, et al. SAR image texture classification based on kernel fisher discriminant analysis[C]//IEEE Conf. Geoscience and Remote Sensing Symposium, Denver, 2006: 3127 -3129.
  • 10Comon P. Independent component analysis: A new concept? [J]. Signal Processing, 1994, 36(3) : 287-314.

共引文献37

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部