期刊文献+

一类带反应项的Othmer-Stevens型趋化模型解的存在性 被引量:2

Existence of Solution to Some Othmer-Stevens Chemotaxis System with Reaction Term
下载PDF
导出
摘要 该文讨论了一类带反应项的Othmer-Stevens型趋化模型的初边值问题证明了:如果边界θΩ∈C^(2+β),函数Φ(x,t,w),f(x,t,u)和g(x,t,u,w)充分光滑,则该系统存在唯一解. In this paper, the authors study an initial-boundary value problem of Othmer-Stevens chemotaxis system with reaction term in the master equation {δu/δt=D∨(u ∨ln u/Φ(x, t, w))+ f(x, t, u), δw/δt=g(x, t, u, w), u∨ln u/Φ(x, t, w) δn→=0. They prove that there exists a unique solution if the boundary δΩ ∈C2+β, the functions Φ(x, t, w), f(x, t, u) and g(x, t, u, w) are sufficiently smooth.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2009年第6期1561-1571,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10471108)资助
关键词 趋化 Othmer—Stevens模型 紧算子 不动点. Chemotaxis Othmer-Stevens model Compact operator Fixed point
  • 相关文献

参考文献18

  • 1Erban R, Othmer H G. From indidual to collective behavior in bacterial chemotaxis. SIAM J Appl Math, 2004, 65(2): 361-391.
  • 2Hillen T, Painter K J. A parabolic model with bounded chemotaxis-prevention of overcrowding. Adv Appl Math, 2001, 26:280-301.
  • 3Hillen T, Stevens A. Hyperbolic models for chemotaxis in 1-D. Nonl Anal: Real World Appl, 2000, 1(3): 409-433.
  • 4Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26:399-415.
  • 5Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence RI: Amer Math Soc, 1968.
  • 6Murray J. Mathematical Biology. Berlin, Heidelberg, New york: Springer, 1993.
  • 7Nagai T. Global existence of solutions to a parabolic systems for chemotaxis in two space dimentions. Nonl Anal Theory, Methods & Applications, 1997, 30(8): 5381-5388.
  • 8Nagai T, Senba T. Global existence and blowup of radial solutions to a parabolic-elliptic system of chemotaxis. Adv Math Sci Appl, 1998, 8:145-156.
  • 9Othmer H C, Sevens A. Aggregation, blowup and collapse: the ABC's of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57:1044-1081.
  • 10Painter K J, Sherratt J A. Modelling the movement of interacting cell populations. J Theor Biol, 2003, 225:327-339.

同被引文献20

  • 1Howard A. Levine,Brian D. Sleeman,Marit Nilsen-Hamilton.Mathematical modeling of the onset of capillary formation initiating angiogenesis[J]. Journal of Mathematical Biology . 2001 (3)
  • 2Levine H A,,Sleeman B D.A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM Journal on Applied Mathematics . 1997
  • 3Hillen T,Stevens A.Hyperbolic models for chemotaxis in 1-D. Nonl Anal Real World Appl . 2001
  • 4Nagai T.Global existence and blow-up of solutions to a chemotaxis system. Nonlinear Analysis . 2001
  • 5Erban R,Othmer H G.From individual to collective behavior in bacterial chemotaxis. SIAM Journal on Applied Mathematics . 2004
  • 6Senba, T,Suzuki, T.Local and norm behavior of blow up solutions to a parabolic system of chemotaxis. J. Korean Math. Soc . 2000
  • 7T. Nagai.Behavior of solutions to a parabolic-elliptic system modelling chemotaxis. J. Korean. Math. Soc . 2000
  • 8Nagai T,Senba T,Yoshida K.Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj Serio Internacia . 1997
  • 9Yang Y,Chen H,Liu W A.On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM Journal on Mathematical Analysis . 2001
  • 10Horstmann,D.From 1970 until now: The Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV . 2003

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部