摘要
该文讨论了一类带反应项的Othmer-Stevens型趋化模型的初边值问题证明了:如果边界θΩ∈C^(2+β),函数Φ(x,t,w),f(x,t,u)和g(x,t,u,w)充分光滑,则该系统存在唯一解.
In this paper, the authors study an initial-boundary value problem of Othmer-Stevens chemotaxis system with reaction term in the master equation
{δu/δt=D∨(u ∨ln u/Φ(x, t, w))+ f(x, t, u),
δw/δt=g(x, t, u, w),
u∨ln u/Φ(x, t, w) δn→=0.
They prove that there exists a unique solution if the boundary δΩ ∈C2+β, the functions Φ(x, t, w), f(x, t, u) and g(x, t, u, w) are sufficiently smooth.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2009年第6期1561-1571,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(10471108)资助