期刊文献+

基于新息正交性的Kalman滤波抗野值法在POS中的应用 被引量:9

Application of Modified Kalman Filtering Restraining Outliers Based on Orthogonality of Innovation to POS
原文传递
导出
摘要 针对位置姿态系统(POS)应用中全球定位系统(GPS)野值会降低滤波精度和稳定性的问题,提出将基于新息正交性的Kalman滤波(KF)抗野值法应用于POS数据处理中。该方法首先通过判断KF新息过程的正交性是否丧失来判别GPS的位置和速度数据中是否出现野值,然后采用活化函数对含有野值的量测值进行加权限制,使修正后的新息过程能够保持正交性质,从而达到辨识并修正GPS野值的目的。车载试验结果表明,该方法能够有效辨识并抑制GPS野值对滤波精度和稳定性的不利影响,其在GPS野值点处的位置、速度精度比标准KF提高了1~2个数量级。 Aiming at solving the problem that the accuracy and stability of Kalman filtering(KF) in a position and orientation system(POS) will be affected if there are outliers in global positioning system(GPS) outputs,this article proposes a method of KF restraining outliers based on orthogonality of innovation in the data processing of POS.This method detectes whether there are outliers in the position and velocity data of GPS by judging if the orthogonality of innovation is lost or not,and assigns an activation function as the weight to each element of measurement, which can keep the orthogonal properties of the innovation sequence and the outliers can be detected and corrected. Field-test results show that this method is effectively resistant to outliers in GPS data, and can obtain improvement of accuracy in position and velocity from ten to hundred times compared with conventional KF.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第12期2348-2353,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家"973"计划(2009CB724001 2009CB724002) 国家"863"计划(2008AA121302)
关键词 位置姿态系统 SINS/GPS组合 野值 KALMAN滤波 新息 正交性 position and orientation system SINS/GPS integration outlier Kalman filtering innovation orthogonality
  • 相关文献

参考文献13

二级参考文献28

  • 1范金城,胡峰.动态测量数据的抗扰性分析研究[J].数理统计与应用概率,1996,11(3):244-248. 被引量:25
  • 2[1]王汉坤,吴荣华.雷测事后处理方法导引[M].北京:国防科工委司令部教育训练部,1978:15
  • 3[3]于寅.高等工程数学[M].武汉华中理工大学出版社,1983:500
  • 4Escamilla-Ambrosio P J,Mort N.A hybrid Kalman filter-fuzzy logic architecture for multisensor data fusion[A].Proceeding of 2001 IEEE Symposium on international control[C],2001:364-369.
  • 5Sasiadek J Z,Khe J.Sensor fusion based on fuzzy Kalman filter[A].Second Workshop on Robot Motion and Control[C],October 8-20 2001.
  • 6李延忠 杨印生.应用模糊数学方法[M].长春:吉林人民出版社,2001,12.33-42.
  • 7Chen C,Cary N C.Robust regression and outlier detection with the robustreg proced ure[EB/OL].http://www2.sas.com/proceedings/ sugi27 / p265-27.pdf.
  • 8Kreinovich V,Patangay P,Longpré L.Outlier detection under interval and fuzzy uncertainty:algorithmic solvability and computational complexity[EB/OL].http://www.cs.utep.edu/vladik/2003/ tr03-10.pdf.
  • 9Papadimitriou S,Kitagawa H,Gibbons D B.LOCI:fast outlier detection using the local correlation integral[DB/OL].http:// www.informedia.cs.cmu.edu/documents/lociicde03.pdf.
  • 10费业泰.误差理论与数学方法[M].北京:机械工业出版社,2000.

共引文献63

同被引文献56

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部