期刊文献+

多支持向量机在线联合的运动目标跟踪算法

Moving object tracking algorithm based on on-line ensemble SVMs
下载PDF
导出
摘要 依据二元分类的思想,提出了一种新的基于多支持向量机在线联合的运动目标跟踪算法。首先选择线性支持向量机作为分类器最大限度地将目标和背景区分开来,对线性支持向量机进行简单高效的在线更新,采用支持向量自动记录运动目标"关键帧"的信息。然后通过Adaboost算法为每个线性支持向量机分别赋以不同的权重,进行在线联合获得强分类器。实验结果表明,该算法具有较强的鲁棒性,尤其在目标变化过于激烈的情况下能够实现较为稳定的跟踪。 Considering the tracker as a binary classification problem,a novel moving object tracking algorithm is presented,which is based on on-line ensemble SVMs.First of all,linear SVMs is choosed as the classifiers to distinguish the target from the background.A simple yet effective way is used for on-line updating linear SVMs,where useful "Key Frames"of target are automatically selected as support vectors.Then,each linear SVM is separately given different weight through the Adaboost algorithm and is on-line ensembled to get a strong classifier.Experimental results show the robustness of the proposed algorithm,especially under large appearance change during tracking.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第36期180-184,共5页 Computer Engineering and Applications
关键词 运动目标跟踪 线性支持向量机 在线更新 支持向量 ADABOOST moving object tracking linear Support Vector Machine on-line updating support vector Adaboost
  • 相关文献

参考文献6

  • 1Avidan S.Support vector tracking[J].IEEE Transactions on PAMI, 2004,26(8) : 1064-1072.
  • 2Okumal K,Taleghani A.A boosted particle filter:Muhitarget detection and tracking[C]//Proceedings of ECCV 2004,2004:28-39.
  • 3Avidan S.Ensemble tracking [C]//Proceedings of CVPR 2005,2005: 494-501.
  • 4Grabner H, Bischof H.On-line boosting and vision[C]//Proceedings of CVPR 2006,2006:260-267.
  • 5Ross D,Lim J,Yang M H.Probabilistic visual tracking with incremental subspace update[C]//Proceedings of ECCV 2004,2004:470- 482.
  • 6Porikli F.Integral histogram:A fast way to extract histograms in Cartesian spaces[C]//Proceedings of CVPR 2005,2005:829-836.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部