期刊文献+

类氢杂质对In_xGa_(1-x)N/GaN和GaN/Al_xGa_(1-x)N量子点中束缚激子态的影响 被引量:1

Effects of Hydrogenic Impurity on Bound Exciton States in In_xGa_(1-x)N/GaN and GaN/Al_xGa_(1-x)N Quantum Dots
下载PDF
导出
摘要 在考虑内建电场效应和量子点(QD)的三维约束效应的情况下,运用变分方法研究了类氢施主杂质的位置对Ⅲ族氮化物量子点中束缚激子态的影响.结果表明:当类氢施主杂质位于量子点中心,InxGa1-xN/GaN量子点的高度和In含量大于临界值时,约束在QD中激子的基态能降低,激子态的稳定性增强,在较高的温度下观察到半导体量子点吸收谱中的激子峰,发光波长增大.而类氢施主杂质总是使束缚在GaN/AlxGa1-xN量子点中激子的基态能降低,杂质可能使在更高温度下观察到GaN/AlxGa1-xN量子点中的激子,发光波长增大.研究发现类氢施主杂质位于量子点上界面时,激子的基态能最小,系统最稳定;随着施主杂质下移,激子基态能增加,激子的解离温度下降,发光波长减小. Concerning the domino effect of the built-in electric field and the three-dimension confinement,the effects of hydrogenic donor impurity position on bound exction states in Ⅲ-nitrides quantum dots(QDs) are investigated by means of a variational approach within the framework of effective-mass approximation.The numerical results show that there are critical values on the height of the QDs and In content when there is a hydrogenic donor impurity in the center of InxGa1-xN/GaN quantum dots. The exciton ground-state energy is reduced, and the emission wavelength and stability of exciton state are increased when the parameter is larger than the critical value, and the impurity is easily introduced into the QDs. The exciton ground-state energy is reduced, and the emission wavelength increases with introducing the impurity into GaN/AlxGa1-x N quantum dots, so it is easy to introduce the impurity into GaN/AlxGa1-xN QDs. The influence of the hydrogenic donor impurity position on the exciton states is also investigated. The results show that the exciton ground-state energy is the lowest, and the stability of exciton state is the strongest when the impurity position is on the upper interphase of QDs. As the impurity moves to lower interphase of QDs, the ground-state energy increases, and the emission wavelength is reduced. It is proved that hydrogenic donor impurity easily exists in the upper interphase of the ODs.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2009年第4期53-57,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号60476047 河南省高校科技创新人才支持计划 编号2008HASTLT030
关键词 类氢施主杂质 量子点 束缚激子 激子基态能 发光波长 hydrogenic donor impurity Quantum dots bound exciton exciton ground-state energy emission wavelength
  • 相关文献

参考文献13

  • 1Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state[J]. J Chem Phys, 1984, 80: 4403-4409.
  • 2Schmidt H M, Weller H. Quantum size effects in semiconductor crystallites: calculation of the energy spectrum for the confined exciton[J]. Cbem Phys Lett, 1986, 129: 615-618.
  • 3Kayanuma Y. Wannier exciton in microcrystals [J]. Solid State Commun, 1986, 59: 405-408.
  • 4Nair S V, Sinha S, Rustagi K C. Quantum size effects in spherical semiconductor microcrystals [J]. Phys Rev B, 1987, 35(8) : 4098-4101.
  • 5Garnett W B. Excitons in quantum boxes: correlation effect and quantum confinement[J]. Phys Rev B, 1988, 37(15): 8763-8772.
  • 6Lo C F, Sollie R. Mass dependence of ground-state properties of wannier exciton in a quantum dot [J]. Solid State Commun, 1991, 79: 775-778.
  • 7宋友林,杨仕娥,贾瑜.立方相GaN/β-SiC(100)(2×1)混合界面的电子结构[J].郑州大学学报(理学版),2003,35(3):38-42. 被引量:1
  • 8Shi J J, Gan Z Z. Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots[J]. J Appl Phys, 2003, 94:407-415.
  • 9Shi J J. Exciton states and interband optical transitions in InGaN quantum dots [J]. Solid State Commun, 2002, 124: 341-345.
  • 10戴宪起,黄凤珍,郑冬梅.Al含量对GaN/Al_xGa_(1-x)N量子点中激子态的影响[J].Journal of Semiconductors,2005,26(4):697-701. 被引量:17

二级参考文献25

  • 1Nakamura Shuji, Takashi Mukai, Masayuki. Candela-class high-brightness in GaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett, 1994,64:1687.
  • 2Nakamura Shuji, Senoh M, Nagahama shin-ichi, et al. In GaN-based multi-quantum-well-structure laser diodes. J Appl Phys, 1996,35 : 74.
  • 3Kim J G, Cfrenkel A, Liuet J, et al. Photoluminescence properties of nitrogen-doped ZnSe grown by molecular-beam epitaxy, Appl Phys, Lett, 1994,65:91.
  • 4Okumuka H, Yoshida S, Okahisa T. Optical properties near the band gap on hexagonal and cubic CaN. Appl Phys Lett, 1994,64:2997.
  • 5Headrick R L, Kycia S,Park Y K. Real-time x-ray-scattering measurement of the nucleation kinetics of cubic gallium nitride on β-SiC(001). Phys Rev, 1996,B54: 14686.
  • 6Kley A, Neugbauer J. Atomic and electronic structure of the GaAs/ZnSe (001) interface. Phys Rev, 1994, B50: 8616.
  • 7Teles K, Scolfaro L M R Enderlein. Structural properties of cubic GaN epitaxial layer grown on β-SIC. J Appl Phys, 1996, 80: 6322.
  • 8Stadele M, Majewski J A, Vogl P. Stability and band offsets of polar GaN/SiC (001) and AlN/SiC (001) interfaces. Phys Rev, 1997,B56 : 6911.
  • 9Perlin P,Gorczyca I,Christensen N E,et al. Pressure studies of gallium nitride: crystal growth and fundamental electronic properties. Phys Rev B, 1992,45 (23): 13307.
  • 10Takeuchi T,Amano H,Akasaki I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Jpn J Appl Phys,2000,39(2A) :413.

共引文献16

同被引文献12

  • 1Widmann F, Simon J, Daudin B, et al. Blue-light emission from GaN self-assembled quantum dots due to giant piezoelectric effect[J]. Phys Rev B, 1998,58 (24) :15989 - 15992.
  • 2NaKamura S, Chichibu S F. Introduction to Nitride Semiconductor Blue Laser and Light Emitting Diodes [ M ]. London : Taylor Francis, 2000.
  • 3Osamu M, Takao S, Koichi T, et al. Narrow photoluminescence peaks from localized states in InGaN quantum dot structures [J]. Appl Phys Lett, 2000, 76(17): 2361 -2363.
  • 4Ryan G B, Funato M, Yoichi K. Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region [ J ]. Appl Phys Lett, 2011,99 ( 1 ) : 1102 - 1104.
  • 5Daniel H, Joab D F, Denis M, et al. Si-interdiffusion in heavily doped A1N-GaN-based quantum well intersubband photodetec- tors[J]. Appl Phys Lett, 2011, 98(24) :1101 -1103.
  • 6Bernardini F, Fiorenini V. Electronic dielectric constants of insulators calculated by the polarization method [ J ]. Phys Rev B, 1998, 58 (23) : 15292 - 15295.
  • 7Novikov S V, Stanton N M, Campion R P, et al. Growth and characterization of free-standing zinc-blende (cubic) GaN layers and substrates [ J ]. Semiconductor Science and Technology, 2008,23 ( 1 ) : 1277 - 1282.
  • 8Chichibu S F, Onuma T, Sota T, et al. Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InGaN/GaN multiple quantum wells[ J]. J Appl Phys, 2003,93 (4) :2051 -2054.
  • 9Lee J, Spector H N, Chou W C. Self-consistent calculation for energy band profiles and energy levels of cubic quantum dots [ J ]. Physica Status Solidi ( B), 2005,242 (14) : 2846 - 2855.
  • 10Chichibu S F, Onuma T, Sota T. Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic Inx Ga1-xN/GaN multiple quantum wells [ J ]. J Appl Phys, 2003, 93 (4) :2051 - 2054.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部