期刊文献+

AMCBFM-MBPE快速分析三维目标的宽带宽角散射特性 被引量:6

Fast Analysis for 3-D Wide-Band & Wide-Angle Electromagnetic Scattering Characteristic by AMCBFM-MBPE
原文传递
导出
摘要 宽带宽角特性是电磁研究领域具有重要意义的课题。文章旨在将自适应修正特征基函数法(AM-CBFM)与基于模型参数估计(MBPE)的技术结合来构造一种快速分析三维目标体宽带宽角电磁特性的混合算法——AMCBFM-MBPE。其中AMCBFM基于对目标体分块,并充分考虑了各分块间耦合度的不同,块间耦合激励通过一系列的系数来修正,收敛判据运用各阶基函数所得的电流来确定。而MBPE基于有理函数插值法。AMCBFM-MBPE技术通过自适应采样后,只需要得到采样点的信息即可求得区间上的电磁特性。比逐点计算目标体电磁特性的传统方法明显减少了采样点的数目。数值结果显示,该混合方法具有精度高、计算时间少、不需要多余存储空间等优点。 Abstract: Wide-band & wide-angle characteristic is a significant topic in electromagnetic field. In this paper, a hybrid method is constructed by the AMCBFM combined with MBPE, which is used to analyze the wide-band & wide-angle electromagnetic scattering characteristic. In AMCBFM, the objects are portioned into blocks, and the coupling excitations are modified by a series of coefficients due to the difference of mutual effect between the distinct blocks. The convergence criteri- on is built via the current density derived by various levels basis functions. And the MBPE is based on the rational function interpolation. An adaptive sampling algorithm is applied to AMCBFM-MBPE to ensure the number of sampling points. Com- pared with the conventional one-by-one-point computational method, AMCBFM-MBPE can derive the characteristic curve in the solved region just via the sampling points information. The results show that the hybrid method can save more computa- tional time and has advantages of satisfied precision and no more excrescent memory space in the computational processing.
出处 《微波学报》 CSCD 北大核心 2009年第6期32-37,共6页 Journal of Microwaves
关键词 自适应修正特征基函数法 模型参数估计 宽带宽角特性 有理函数插值 自适应采样 Adaptively modified characteristic basis function method( AMCBFM), Model based parameter estimation (MBPE), Wide-band & wide-angle, Rational function interpolation, Adaptive sampling algorithm
  • 相关文献

参考文献16

  • 1谭云华,周乐柱.三维电大尺寸复杂群目标的单站RCS的快速多极子分析[J].北京大学学报(自然科学版),2004,40(5):823-829. 被引量:7
  • 2董健,柴舜连,毛钧杰.组合导体目标电磁特性的快速多极算法计算[J].微波学报,2005,21(5):9-13. 被引量:1
  • 3Maarten J M, van der Vorst, Peter J I. de Maagt. Efficient Body of Revolution Finite-Difference Time-Domain Modeling of Integrated Lens antennas [ J ]. IEEE Microwave and Wireless Components Letters, 2002, 12 ( 7 ) : 258-260.
  • 4Prakash V V S, Raj Mittra. Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations [ J ]. Microwave and Optical Technology Letter, 2003, 36(2) : 95-100.
  • 5Guodong Han, Changqing Gu. A Hybrid QR Factorization with Dual-MGS and Adaptively Modified Characteristic Basis Function Method for Electromagnetic Scattering Analysis [ J ]. Microwave and Optical Technology Letters, 2007, 49( 11 ) : 2879-2883.
  • 6Pillage L T, et al. Asymptotic waveform evaluation for timing analysis [ J ]. IEEE Trans on Comput-Aided Des Integrated Circuits and Syst. , 1990, 9(4) : 352-366.
  • 7施长海,孙玉发.二维电大导体目标宽带雷达散射截面的快速计算[J].电波科学学报,2004,19(3):325-328. 被引量:13
  • 8Prakash V V S, Yeo Junho, Mittra Raj. An adaptive algorithm for fast frequency response computation of planar microwave structures [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2004,52 (3) : 920-926.
  • 9Wan J X, Liang C H, Lei J. A fast analysis of scattering from microstrip antennas over a wide band [ C ]. PIER, Suzhou, China, 2005. 178-208.
  • 10Burke G J, Chakrabarthi S, Chakrabarthi S. Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions [ J ]. IEEE Trans Magnetics, 1989, 25 (7) : 2807-2809.

二级参考文献40

  • 1R F Harrington. Field computation by moment method [M]. New York; Macmillan, 1968.
  • 2N Engheta, W D Murphy, V Rokhlin. The fast multipole method for electromagnetic scattering problems [J]. IEEE Trans., 1992, AP-40(6): 634~641.
  • 3J Song, C C Lu, W C Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objeets[J]. IEEE Trans. , 1997, AP-45(10): 1488~1493.
  • 4K R Umashanker, S Nimmagadda, A Taflove. Numerical analysis of electromagnetic scattering by electrically large objects using spatial decomposition technique[J].IEEE Trans. , 1992 ,AP-40(8): 867~877.
  • 5Q Ye, L Shafai. Performance of the progressive numerical method and Its comparison with the modified spatial decomposition technique in solving large scattering problems [J]. IEE Proc-Microw. Antennas Propag. , 1998, 145(2):169~173.
  • 6Luis M Correia. A 3D interpolation method for base-station-antenna radiation pattern [J]. IEEE Antennaand Propagation Magazine. ,2001,43 (2), 132-137.
  • 7Douglas H Werner,Rene J Allard, The simultaneousinterpolation of antenna radiation patterns in both thespatial and frequency domains using model-based pa-rameter estimation[J]. IEEE transaction on antennaand propagation. , 2000,48(3):383-392.
  • 8Jozef Bartkovjak. Approximation by rational funct-ions[J]. Measurement science review. , 2001,1 (1) : 63-65.
  • 9E K Miller. Model-based parameter estimation in elec tromagnetic-part one,Background and theoreticaldevel-opment[J]. IEEE Antennas and propagation Mag-azine.,1998,40(1) :42-52.
  • 10E K Miller, Model-based parameter estimation in elec tromagnetic-part Ⅱ : Applications to EM observables[J]. IEEE Antenna and Propagation Magazine.,1998,40(2) :51-65.

共引文献34

同被引文献48

  • 1OKHMATOVSKI V, YUAN M, JEFFREY I, et al. A three-dimensional precorrected FFT algorithm for fast method of moments solu- tions of the mixed-potential integral equation in layered media [J].IEEE Transactions on Microwavetheory and Techniques, 2009, 57(12): 3 505-3 517.
  • 2PHILLIPS J R, WHITE J K. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures[J]. IEEE Trans Com- puter Aided Design Integr Circuits Syst, 1997, 16(10)..1 059-1 072.
  • 3VANDE G D, MICHIELSSEN E, OLYSLAGER F, et al. A high-performance upgrade of the perfectly matched layer multilevel fast muhipole al- gorithm for large planar microwave struetures[J].IEEE Transactions on Antennas and Propagation, 2009, 57(6) : 1 728-1 739.
  • 4LING F, SONG J, JIN J M. Multilevel fast multipole algorithm for analysis of large-scale microstrip structures[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(12) :508-510.
  • 5SERTEL K, VOLAKIS J L. Multilevel fast muhipole method solution of volume integral equations using parametric geometry modeling[J].IEEETransactions on Antennas and Propagation, 2004, 52(7):1 686-1 691.
  • 6WANG C F, XIA L, LI L W, et al. BCG-FFT analysis of microstrip structure in multilayered media[A]. Asia-Pacific Microwave Confer- ence (APMC)[C]. Taipei:[s. n. ], 2001. 212-215.
  • 7SARKAR T K, ARVAS E, RAO S M. Application of FFT and the conjugate gradient method for the solution of electromagnetic radia- tion from electrically large and small conducting bodies[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(5): 635-640.
  • 8MO L, RUI P L, ZHUANG W, et al. Fast analysis of microstrip antenna array by use of the adaptive integral method(AIM) combined with the loose GMRES method[J]. IEEE Antennas and Propagation Society International Symposium, 2005,53(2) ..479-482.
  • 9GUO J L, LI J Y, LIU Q Z. Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 1 910-1 916.
  • 10LING F, WANG C F, JIN J M. An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image methodEJ. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(5):832-839.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部