期刊文献+

分数阶傅里叶域的阵列信号盲分离方法 被引量:1

Blind Source Separation of the Array Signal in the Fractional Fourier Domain
下载PDF
导出
摘要 本文提出一种基于分数阶傅里叶域阵列平均的盲信号分离方法,它在变换域中引入加权函数来降低噪声及减少各源信号间的相互干扰。和传统盲信号分离方法相比,该方法不需要矩阵的白化和联合对角化,并且复杂度低,运算量小,抗干扰性能好。 A novel blind source separation method was proposed based on array average in the fractional Fourier domain,which introduces a set of weighting function into the fractional Fourier domain to decrease the noise level and interaction among the source signals.Compared with the traditional blind source separation method,the proposed method does not require whitening and joint-diagonalization to the hybrid matrix,has lower complexity,small amount of operation and good anti-jamming capability.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第11期1451-1456,共6页 Acta Armamentarii
基金 国家杰出青年科学基金项目(60625104) 国家自然科学基金项目(60902054) ‘泰山学者’建设工程项目
关键词 信息处理技术 盲信号分离 阵列平均 分数阶傅里叶变换 information processing blind source separation array average fractional Fourier transform
  • 相关文献

参考文献5

二级参考文献79

共引文献438

同被引文献16

  • 1Comon P, Jutten C. Handbook of blind source separation: inde- pendent component analysis and applications ~ M ]. Kidlington, Oxford, UK : Academic Press of Elsevier, 2010.
  • 2Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations [ J ]. Signal Processing, 2001, 81(11) : 2353 -2362.
  • 3Belouchrani A, Amin M G, Nadege T M, et al. Source separation and localization using time-frequency distributions: an overview [ J]. IEEE Signal Processing Magazine, 2013, 30(6) : 97 - 107.
  • 4Linh-Trung N, Belouchrani A, Abcd-Meraim K, et al. Separatingmore sources than sensors using time-frequency distributions [ J ]. EURASIP Journal on Applied Signal Processing, 2005, 2005 (17): 2828 - 2847.
  • 5Aissa-E1-Bey A, Linh-Trung N, Abed-Meraim K,et al. Underde- termind blind separation of nondisjoint sources in the time-frequen- cy domain [ J ]. IEEE Transaction on Signal Process, 2007, 55 (3) : 897 - 907.
  • 6Peng D Z, Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources[ J]. IEEE Transac- tion on Signal Process, 2009, 57 (2) : 809 -814.
  • 7Peng D Z, Xiang Y. Underdetermined blind separation of non- sparse sources using spatial time-frequency distributions[ J]. Dig- ital Signal Processing, 2010, 20(2) : 581 - 596.
  • 8Xie S L, Yang L, Yang J M, et al. Time-frequency approach to underdetermined blind source separation[ J]. IEEE Transaction on Neural Network and Learning System, 2012, 23 (2) : 306 -316.
  • 9Guo J, Zeng X P, She Z S. Blind source separation based on high-resolution time-frequency distributions [ J]. Computer and Electrical Engineering, 2012, 38( 1 ) : 175 - 184.
  • 10Ghaderi F, Makkiabadi B, McWhirter J G, et al. Blind source extraction of cyclostationary sources with common cyclic frequen- cies[ C ]///Proceedings of International conference on Acoustics, Speech and Signal Processing. Dallas, Texas, US : IEEE, 2010 : 4146 - 4149.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部