摘要
作为一个非线性动力学系统,在一定参数范围和外部输入下永磁同步电机可以呈现非常复杂的混沌运动或极限环,其混沌特性较为显著.在永磁同步电机的非线性数学模型基础上,分析其分叉图、Lyapunov指数图谱和平衡点性质等非线性运动特性,并通过数字仿真得到验证.最后基于该模型设计了相应的模拟电路,实验结果和数字仿真一致.
The permanent magnet synchronous motor,which is a nonlinear dynamic system,can exhibit a variety of chaotic or limit cycle phenomenon under some choices of system parameters and external inputs,and its chaotic characteristics are more prominent. Based on the mathematical model of a permanent magnet synchronous motor,its nonlinear characteristics are analysed with respect to the bifurcation diagram,Lyapunov exponent map and the nature of its equilibrium point in this paper,and the results in well demonstrated by numerical simulations. Finally,an analog electronic circuit is designed to implement the mathematical model of a permanent magnet synchronous motor,and the experimental results of the system well agreed with the simulation results.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2009年第12期8146-8151,共6页
Acta Physica Sinica
基金
国家自然科学基金(批准号:10772135
60774088)
教育部科学技术研究重点项目(批准号:207005)
天津市应用基础研究计划(批准号:07JCYBJC05800
08JCZDJC91200)资助的课题~~
关键词
永磁同步电机
混沌
分形分析
电路实现
permanent magnet synchronous motor chaos fractal analysis circuit implementation