期刊文献+

目标主色集结合SIFT的彩色目标快速识别 被引量:6

Combining ODCS and SIFT for Fast Color Object Identification
下载PDF
导出
摘要 针对基于尺度不变特征变换(Scale Invariant Feature Transform,SIFT)的目标识别实时性差的缺陷,提出了一种结合目标主色集(Object Dominant Color Set,ODCS)初定位的SIFT彩色目标快速识别算法(ODCS-SIFT)。将目标识别分为两个阶段:在离线训练阶段,采用人机交互的方式提取目标特征;在实时图像处理阶段,首先基于目标主色集进行顺序网格搜索和种子填充,再根据各主色频数约束来确定目标的初定位区域,最后在灰度化的初定位区域进行SIFT处理。对比实验表明,本方法可有效地提高SIFT目标识别的实时性。 To improve the celerity of object identification based on scale invariant feature transform(SIFT), a new fast approach called OECS-SIFT was proposed to locate and identify color object from scene using combination of object dominant color set(ODCS) and SIFT. The whole approach comprises two joint stage: off-line training stage and on-line identifying stage. At off-line stage, find OIlS and SIFT libraries through human-machine interaction, while at on-line stage, firstly search in the whole scene image using ordinal grid scanning and seed filling simultaneously, then locate the object roughly using the ODCS frequency restriction, lastly in the smaller grayed location a more real-time and precise SIFT extracting and matching are executed. Experimental results show that the ODCS-SIFT can improve the celerity of object identification effectively.
出处 《计算机科学》 CSCD 北大核心 2009年第12期257-258,266,共3页 Computer Science
基金 国家863高技术研究发展计划资助项目(2006AA04Z212) 河北省教育厅自然科学研究计划项目(Z2008473)资助
关键词 目标主色集 目标识别 特征联合 Object dominant color set, Object identification, Feature combination
  • 相关文献

参考文献10

  • 1Mikolajezyk K,Schmid C. A performance evaluation of local descriptors[A]//Proeeedings of IEEE International Conference on Computer Vision and Pattern Recognition[C]. Madison, IEEE, 2003 : 1403-1410.
  • 2Lowe D. Object recognition from local scale - invariant features [A]//Proceedings oS International Conference on Computer Vision[C]. Vancouver, ICCV, 1999: 1150-1157.
  • 3Lowe D. Distinctive image features from scale - invariant key - points[J]. International Journal of Computer Vision, 2004, 60 (2):91-110.
  • 4Ke Y,Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [A]// Proceedings of the IEEE Computer Society Conference[C]. Washington DC, IEEE, 2004:511-517.
  • 5Abdel-Hakim E, Farag A. CSIFT: A SIFT Descriptor with Color Invariant Characteristics[A]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C]. New York, IEEE, 2006:1978-1983.
  • 6Bosch A, Zisserman A, Munoz X. Scene classification via pLSA [A],//Proceedings of the European Conference on Computer Vision[C]. Graz, ECCV, 2006 : 517-530.
  • 7徐旭,朱淼良,梁倩卉.一种用于CBIR系统的主色提取及表示方法[J].计算机辅助设计与图形学学报,1999,11(5):385-388. 被引量:27
  • 8袁昕,吴春明,朱淼良,王东辉.基于主色选择的CBIR检索[J].计算机研究与发展,2002,39(9):1120-1126. 被引量:5
  • 9黄晶,赵臣,周明明.基于快速彩色空间变换的足球机器人目标搜索[J].哈尔滨工业大学学报,2003,35(9):1036-1039. 被引量:21
  • 10何超,熊蓉,戴连奎.足球机器人视觉图象的快速识别[J].中国图象图形学报(A辑),2003,8(3):271-275. 被引量:28

二级参考文献14

共引文献71

同被引文献43

  • 1杨莉,张弘,李玉山.一种快速自适应RSUSAN角点检测算法[J].计算机科学,2004,31(5):198-200. 被引量:23
  • 2张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 3Mao Wenge,Zhang Tianwen,Wang Li.Detection of text in images using SUSAN edge detector[J].Joumal of Harbin Institute of Technology(New Series) ,2005,12( 1 ) : 34-40.
  • 4Loog M, Lauze F.The improbability of harris interest points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(6) : 1141-1147.
  • 5Lowe D G.Object recognition from local scale-invariant features[C]//Intemational Conference on Computer Vision, Corfu, Greece, 1999: 1150-1157.
  • 6Ke Yah, Sukthankar R.PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA,2004:511-517.
  • 7Li Yanfang, Wang Yarning, Huang Wenqing, et al.Automatic image stitching using SIFT[C]//ICALIP 2008 International Conference on Audio, Language and Image Processing, Shanghai, China, 2008: 568-571.
  • 8Lowe D G.Distinctive image features from scale-invariant key-points[J].Intemational Journal of Computer Vision, 2004, 60 (2):91-110.
  • 9Cheng Chia-Ming, Lai Shanghong.A consensus sampling technique for fast and robust model fitting[J].Pattem Recognition, 2009,42(7) : 1318-1329.
  • 10Lowe D G. Object recognition from local scale-invariant features[ C ] // International Conference on Computer Vi- sion, Corfu, 1999: 1150-1157.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部