期刊文献+

基于互相关函数相角特征的RBF神经网络来波方位估计 被引量:8

Direction of Arrival Estimation Approach Based on Phase Angle Feature of Correlation Function Using RBF Neural Networks
下载PDF
导出
摘要 有效的方位特征获取对构建智能来波方位估计模型具有十分重要的意义。该文在分析阵列接收信号相关函数的基础上,首次提出利用相邻阵元信号互相关函数的相角作为来波方位特征。与常用的协方差矩阵上三角特征相比,剔除了与来波方位无关的幅度信息和冗余的方位特征信息,在不损失有效方位信息的基础上使特征维数得到极大地降低。实验结果表明,利用相角特征构建的RBF神经网络的结构更简洁,泛化性能更好,来波方位估计精度高,实时性好,具有广阔的工程应用价值。 Effective feature extraction is very important when building the smart DOA estimation model. Based on analyzing the correlation function of the array signal, this paper firstly presents using the angles of contiguous array signal's correlation function for DOA estimation purpose instead of common used upper triangular half of the covariance matrix, which eliminates the irrelevant magnitude information and redundant direction characteristic. Therefore the feature dimension is largely reduced without losing any DOA information. Experimental results show that the performance of RBF neural network using proposed Phase-feature is superior to the common used upper triangular half of the covariance matrix in terms of neural network size, generalization, estimation precision and real-time performance, so it has a broad application value.
作者 张旻 李鹏飞
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2926-2930,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60672161)资助课题
关键词 信号处理 DOA估计 协方差矩阵 相角特征 径向基神经网络 Signal processing DOA estimation Covariance matrix Phase angle figures RBF neural network
  • 相关文献

参考文献11

  • 1安冬,王守觉.基于仿生模式识别的DOA估计方法[J].电子与信息学报,2004,26(9):1468-1473. 被引量:11
  • 2Guo Wo, Qiu T S, and Tang H, et al.. Performance of RBF neural networks for array processing in impulsive noise environment [J]. Digital SignalL Processing, 2008, 18(2): 168-178.
  • 3Wang M, Yang S, and Wu S, et al.. A RBFNN approach for DOA estimation of ultra wideband antenna array[J]. Neurocomputing. 2008, 71(4-6): 631-640.
  • 4Vigneshwaran S, Sundararajan Narasimhan, and Saratchandran P. Direction of arrival (DOA) estimation under array sensor failures using a minimal resourse allocation neural network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 334-343.
  • 5Dourado O D Doria A D, and Da Mata W. Determination of multiple direction of arrival in antennas arrays with radial basis functions[J]. Neurocomputing, 2006, 70(1-3): 55-61.
  • 6Kuwahra and Matsumoto. Experiments of direction finder by RBF neural network with post processing. IEEE Electronic Letters, 2005, 41(10): 24-25.
  • 7严颂华,吴世才,吴雄斌.基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报,2008,30(2):339-342. 被引量:17
  • 8于斌,尹成友,黄冶.阵列误差影响下的RBF神经网络波达方向估计[J].微波学报,2007,23(6):21-25. 被引量:12
  • 9安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 10Shieh Ching-Sung and Lin Chin-Teng. Direction of arrival estimation based on phase differences using neural fuzzy network[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1123.

二级参考文献39

  • 1杨超,邱文杰.自适应天线中阵元间互耦的校正[J].电子学报,1993,21(3):58-62. 被引量:19
  • 2王哲,李衍达,罗发龙.一种用于PCA与MCA的神经网络学习算法[J].电子学报,1996,24(4):12-16. 被引量:6
  • 3王兰美,廖桂生,王洪洋.矢量传感器误差校正与补偿[J].电子与信息学报,2006,28(1):92-95. 被引量:7
  • 4[1]Fisher.Contributions to Mathematical statistics[M].New York:J Wiley,1952.
  • 5[2]陈季镐(美).统计模式识别[M].邱炳章,邱华,译.北京:北京邮电学院出版社,1989.
  • 6[3]Vapnik and Chervonenkis.Theory of Pattern Recognition[M].Nauka:Moscow,1974.
  • 7[4]Adimir N Vapnik.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 8[9]斯华龄(美).智能视觉图像处理[M].上海:上海科技教育出版社,2002.
  • 9VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 10Fisher R A. Contributions to Mathematical Statistics[M]. New York: J. Wiley, 1952: 1-3.

共引文献39

同被引文献45

  • 1安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 2安冬,王守觉.基于仿生模式识别的DOA估计方法[J].电子与信息学报,2004,26(9):1468-1473. 被引量:11
  • 3陈洪光,王世晞,沈振康.降维训练神经网络的圆阵列二维角估计[J].信号处理,2005,21(5):505-507. 被引量:1
  • 4陈辉,苏海军.强干扰/信号背景下的DOA估计新方法[J].电子学报,2006,34(3):530-534. 被引量:51
  • 5VIGNESHWARAN S, SUNDARARAJAN N, SARATCHANDRAN P. Direction of arrival ( DOA ) estimation under array sensor failures using a minimal resourse allocation neural network[ J]. IEEE Trans on Antennas and Propagation,2007,55(2) :334-343.
  • 6EIZOOGHBY A H, CHRISTODOULOU C G, GEORGIOPOULO S. A neural network-based smart antenna for multiple source tracking [ J ].IEEE Trans on Antennas and Propagation ,2000,48(5 ) :768-776.
  • 7FONSECA N J G, COUDYSER M,LAURIN J J,et al. On the design of a compact neural network-based DOA estimation system[ J]. IEEE Trans on Antennas and Propgation,2010,58(2) :357-366.
  • 8WU Biao, CHEN Hui, WANG Yi. DOA estimation based on RBFNN for minimum redundancy linear array[ C]//Proc of International Conference on Artificial Intelligence and Computational Intelligence. Washington DC : IEEE Computer Society ,2009:520-524.
  • 9Wang M, Yang S Wu S. A RBFNN approach for DOA estimation of ultra wideband antenna array [J]. Neuro Computing, 2008, 71(4-6): 631-640.
  • 10S Vigneshwaran, Narasimhan Sundararajan, P Saratchandran. Direction of Arrival (DOA) Estimation Under Array Sensor Failures Using a Minimal Resourse Allocation Neural Network [J]. IEEE Transeatlon on Antennasand Propagation, 2007, 55(2): 334-343.

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部