摘要
获得了共形平坦黎曼流形中的2-调和子流形成为极小子流形的二个充分条件.讨论了局部对称共形平坦黎曼流形中的2-调和子流形关于第二基本形式长度的量子化现象.
In this paper, we obtain sufficient conditions under which 2 - harmonic submanifolds turn into minimal submanifolds in a conform flat Riemannian manifold. The quantization phenomenon on the second fundamental form pf 2-harmonic submanifold in a locally symmetric conform flat Tiemannian manifolds is studied.
出处
《南方冶金学院学报》
1998年第4期295-299,共5页
Journal of Southern Institute of Metallurgy
基金
江西省自然科学基金
关键词
共形平坦
2-调和子流形
黎曼流形
极小子流形
Conform flat, 2-Harmonic submanifolds, On the second fundamental form, Minimal