期刊文献+

一种采用聚类技术改进的KNN文本分类方法 被引量:33

An Improved KNN Text Categorization Algorithm by Adopting Cluster Technology
原文传递
导出
摘要 KNN算法稳定性好、准确率高,但由于其时间复杂度与样本数量成正比,导致其分类速度慢,难以在大规模海量信息处理中得到有效应用.文中提出一种改进的KNN文本分类方法.其基本思路是,通过文本聚类将样本中的若干相似文档合并成一个中心文档,并用这些中心文档代替原始样本建立分类模型,这样就减少了需要进行相似计算的文档数,从而达到提高分类速度的目的.实验表明,以分类准确率、召回率和F-score为评价指标,文中方法在与经典KNN算法相当的情况下,分类速度得到较大提高. k-Nearest Neighbor (KNN) algorithm has the advantage of high accuracy and stability. But the time complexity of KNN is directly proportional to the sample size, its classification speed is low and it is problematic to be put into practice in large-scale information processing. An improved KNN text categorization algorithm is proposed which classifies faster than the traditional KNN does. Firstly, some similar sample documents are combined into a center document through adopting automatic text clustering technology. Then, a large number of original samples are replaced with the small amount of sample cluster centers. Therefore, the calculation amount of KNN is reduced greatly and the classification is speeded up. The experimental results show that the time complexity of the proposed algorithm is decreased by one order of magnitude and its accuracy is approximately equal to those of the SVM and traditional KNN.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第6期936-940,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60672149) 国家863计划项目(No.2006AA010109)资助
关键词 k-最近邻(KNN) 文本分类 文本聚类 聚类中心 自然语言处理 k-Nearest Neighbor (KNN), Text Categorization, Text Clustering, Cluster Center,Natural Language Processing (NLP)
  • 相关文献

参考文献13

  • 1Lewis D D. Naive Bayes at Forty: The Independence Assumption in Information Retrieval // Proc of the lOth European Conference on Machine Learning. Chemnitz, Germany, 1998 : 4 - 15.
  • 2Cohen W W, Singer Y. Context-Sensitive Learning Methods for Text Categorization// Proc of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Zurich, Switzerland, 1996 : 307 - 315.
  • 3Joaehims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features//Proc of the 10th European Conference on Machine Learning. Chemnitz, Germany, 1998: 137 - 142.
  • 4Nigam K, Lafferty J, McCallum A. Using Maximum Entropy for Text Classification//Proc of the Workshop on Machine Learning for Information Filtering. Stockholm, Sweden, 1999 : 61 - 67.
  • 5Yang Yiming, Liu Xin. A Re-Examination of Text Categorization Methods// Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in the Information Retrieval. Berkeley, USA, 1999:42-49.
  • 6Sebastiani F. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 2002, 34 ( 1 ) :1- 47.
  • 7李荣陆,胡运发.基于密度的kNN文本分类器训练样本裁剪方法[J].计算机研究与发展,2004,41(4):539-545. 被引量:98
  • 8胡燕,吴虎子,钟珞.基于改进的kNN算法的中文网页自动分类方法研究[J].武汉大学学报(工学版),2007,40(4):141-144. 被引量:20
  • 9王煜,白石,王正欧.用于Web文本分类的快速KNN算法[J].情报学报,2007,26(1):60-64. 被引量:33
  • 10代六玲,黄河燕,陈肇雄.中文文本分类中特征抽取方法的比较研究[J].中文信息学报,2004,18(1):26-32. 被引量:228

二级参考文献38

  • 1王煜,王正欧.基于模糊决策树的文本分类规则抽取[J].计算机应用,2005,25(7):1634-1637. 被引量:13
  • 2胡燕,吴虎子,钟珞.中文文本分类中基于词性的特征提取方法研究[J].武汉理工大学学报,2007,29(4):132-135. 被引量:26
  • 3黄昌宁 等.对自动分词的反思[A]..语言计算与基于内容的文本处理[C].北京:清华大学出版社,2003,7.26-38.
  • 4[1]D D Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: The 10th European Conf on Machine Learning(ECML98), New York: Springer-Verlag, 1998. 4~15
  • 5[2]Y Yang, X Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, New York: ACM Press, 1999
  • 6[3]Y Yang, C G Chute. An example-based mapping method for text categorization and retrieval. ACM Trans on Information Systems, 1994, 12(3): 252~277
  • 7[4]E Wiener. A neural network approach to topic spotting. The 4th Annual Symp on Document Analysis and Information Retrieval (SDAIR 95), Las Vegas, NV, 1995
  • 8[5]R E Schapire, Y Singer. Improved boosting algorithms using confidence-rated predications. In: Proc of the 11th Annual Conf on Computational Learning Theory. Madison: ACM Press, 1998. 80~91
  • 9[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features. In: The 10th European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998. 137~142
  • 10[7]S O Belkasim, M Shridhar, M Ahmadi. Pattern classification using an efficient KNNR. Pattern Recognition Letter, 1992, 25(10): 1269~1273

共引文献354

同被引文献363

引证文献33

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部