期刊文献+

基于模糊支持向量机的高速公路交通事件的自动检测 被引量:2

Approach to Automatic of Highway Detection Incident Based on Fuzzy support vector machine
下载PDF
导出
摘要 利用支持向量机的全局优化、适应性强、泛化性能好等优点,针对实时交通流数据的随机性、高维、非线性和时变等特性,将模糊支持向量机应用于高速公路交通事件检测问题中。在识别阶段利用60组实测数据训练模糊支持向量机,利用60组实测数据进行测试,测试结果表明,利用FSVM进行交通事件检测,识别率达到96.7%。 Support Vector Machine(SVM) has the advantages of global solutions, good adaptability, high generalization in theory. Due to the randomicity , high dimension, nonlinear, time -variant of the traffic flow data, Fuzzy support vector machine (FSVM) applied to high way incident detection In the stage of traffic incident recognition, sixty train data was used to train the FSVM, sixty test data was used to testify the effect of the recognition model. The results show that the recognition rate is approximate to 96.7%, which also proved the feasibility of the approach proposed in this paper.
作者 焦军彩
出处 《盐城工学院学报(自然科学版)》 CAS 2009年第4期70-72,共3页 Journal of Yancheng Institute of Technology:Natural Science Edition
关键词 模糊支持向量机 交通事件自动检测 隶属函数 fuzzy support vector machine traffic incident automatic detection Subjection function
  • 相关文献

参考文献1

  • 1杨纶标 高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2002.271-287.

共引文献114

同被引文献46

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部