期刊文献+

大规模合成近乎单分散的镍三维纳米结构及其催化性能研究(英文) 被引量:1

Large-Scale Synthesis and Catalytic Properties of Nearly Monodispersive Nickel 3D Nanostructures
下载PDF
导出
摘要 以聚乙烯吡咯烷酮(PVP)为包覆剂,通过一种改进的水热法合成近乎单分散的镍三维纳米结构。利用粉末 X 射线衍射(XRD)、扫描电镜(SEM)和场发射扫描电镜(FE-SEM)对所得产物进行表征。结果表明,立方相的镍晶体是由中心放射状生长的纳米矛头组成的花状三维纳米结构,其尺寸约为 1.5 μm。这些纳米矛头具有均一的形状:其根部为(120±20) nm,顶部为(15±5) nm,长度为(400±50) nm,厚度为(10±2) nm。对比实验表明,镍三维纳米材料的花状形貌受到反应时间、温度和表面活性剂协同效应的控制。良好的催化性能表明,这种镍三维纳米结构将来很可能成为一种优异的催化剂。 Nearly monodispersive nickel 3D nanostructures were synthesized using a improved hydrothermal route with poly-(N-vinyl-pyrrolidone) as capping reagent. The obtained products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and field-emission scanning electron microscopy (FE-SEM). Results reveal that cubic nickel crystals possess flower-like 3D nanostructures with nanospearheads growing radially from the core and a uniform diameter of about 1.5 um. These nanospearheads have almost uniform shapes: the root in (120±20) nm, the tip in (15±5) nm, the length in (400±50) nm, and the thickness in (10±2) nm. Contrast experiments demonstrate that flower-like shape of nickel 3D nanocrystals is controlled by the cooperative effects of time, temperature and surfactant. The good catalytic effects indicate these flower-like nickel 3D nanocrystals are likely to be applied as a better catalyst in the future.
作者 李强 杜卫民
机构地区 安阳师范学院
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第12期2080-2084,共5页 Rare Metal Materials and Engineering
基金 Supported by the Basic Research Program of Education Department of Henan Province (2009104790014)
关键词 三维纳米结构 水热合成 催化剂 nickel 3D nanostructure hydrothermal synthesis catalyst
  • 相关文献

参考文献36

  • 1Burda C B, Chen X B, Narayanan R et al. Chem Rev[J], 2005,105:1025.
  • 2Xia Y N, Yang P D, Sun Y Get al. Adv Mater[J], 2003, 15:353.
  • 3Tenne R. Angew Chem Int Ed[J], 2003, 42:5124.
  • 4Hodes G. Adv Mater[J], 2007, 19:639.
  • 5Che G, Lakshmi B B, Fisher E R et al. Nature[J], 1998, 393:346.
  • 6Hu J T, Odom T W, Lieber C M. Acc Chem Res[J], 1999, 32: 435.
  • 7Shevchenko E V, Talapin D V, Kotov N A et al. Nature[J], 2006, 439:55.
  • 8Steinhart M, Wehrspohn R B, Gosele U et al. Angew Chem Int Ed[J], 2004, 43:1334.
  • 9Maoz R, Frydman E, Cohen S R et al. Adv Mater[J], 2000, 12: 424.
  • 10Ung D, Viau G, Ricolleau C et al. Adv Mater[J], 2005, 17:338.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部