期刊文献+

高速列车轮轨参数对车轮踏面磨耗的影响 被引量:32

Influence of wheel/rail parameters on wheel profile wear of high-speed train
原文传递
导出
摘要 建立了高速列车多体动力学仿真模型和车轮踏面磨耗计算模型,通过动力学模拟计算了轮轨接触关系和接触力,用FASTSIM重新计算轮轨接触斑内的滑动速度、轮轨切向力和摩擦功率的分布,采用基于摩擦功的轮轨磨耗模型计算了车轮滚过一圈时踏面上一个接触斑的磨耗质量,再通过累积得到运行一定距离后的踏面磨耗深度。采用数值仿真方法研究了不同车轮踏面外形、轮对内侧距、轨底坡和车速对踏面磨耗深度和磨耗分布的影响。计算结果表明:LMA和S1002踏面的磨耗分布比较均匀,LM踏面的磨耗深度最大,LM和XP55踏面的磨耗区域更靠近轮缘;在LMA踏面标准轮轨匹配参数下,轮对内侧距增加会增加磨耗,磨耗深度随着轨底坡减小而增大;高速列车车轮踏面磨耗与等效锥度密切相关,较小的等效锥度会减小磨耗,但等效锥度的选择需要兼顾动力学性能的其他方面。 The multibody dynamics model of high-speed vehicle and the wear calculation model of wheel profile were set up. The wheel/rail contact relationship and the contact normal force were calculated by dynamics simulation. FASTSIM was used to calculate the sliding velocity, the tangential froce and the wear power dissipation in the contact patch. The wear model based on wear energy dissipation was adopted. The mass loss in a contact patch was calculated when wheelset rolled a circle. The wear depth was cumulated after vehicle ran a distance. Numerical simulation was used to study the influence of profile shape, vehicle speed, wheel back distance and rail cant on the wear depth and wear distribution of wheel profile. The result indicates that the wear regions of S1002 and LMA profiles are more even. The wear depth of LM profile is biggest. The wear regions of LM and XP55 profiles near wheel flage. When it is LMA profile with standard wheel/rail parameters, the wear depth increases with the increase of wheel back distance, and increases with the decrease of rail cant. The profile wear is closely related to the equivalent conicity. Although the profile wear is less when the equivalent conicity is smaller, the other dynamics performances should be considered when selecting the equivalent conicity. 4 tabs, 9 figs, 11 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2009年第6期47-53,63,共8页 Journal of Traffic and Transportation Engineering
基金 国家973计划项目(2007CB714702) "十一五"国家科技支撑计划项目(2009BAG12A01-B09)
关键词 高速列车 车轮踏面 踏面磨耗 动力学仿真 high-speed train wheel profiles profile wear dynamics simulation
  • 相关文献

参考文献11

  • 1ENBLOM R, BERG M. Impact of non elliptic contact modelling in wheel wear simulation[J]. Wear, 2008, 265: 1532-1541.
  • 2JENDEL T. Prediction of wheel profile wear-comparisons with field measurements[J]. Wear, 2002, 253: 89-99.
  • 3BRAGHIN F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear, 2006, 261: 1253-1264.
  • 4ZOBORY I. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics, 1997, 28(2): 221-259.
  • 5OLOFSSON U, TELLISKIVI T. Wear, plastic deformation and friction of two rail steels-a full-scale test and laboratory study[J]. Wear, 2003, 254: 80-93.
  • 6KALKER J J. Simulation of the development of a railway wheel profile through wear[J]. Wear, 1991, 150: 355-365.
  • 7ENBLOM R, BERG M. Simulation of railway wheel profile development due to wear-influence of disc braking and con tact environment[J]. Wear, 2005, 258: 1055-1063.
  • 8JENDEL T, BERG M. Prediction of wheel profile wear-methodology and verification[J]. Vehicle System Dynamics, 2002, 37 (Supplement): 502-513.
  • 9常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析[J].中国铁道科学,2008,29(4):89-95. 被引量:29
  • 10KALKER J J. A fast algorithm for the simplified theory of rolling contaet[J]. Vehicle System Dynamics, 1982, 11(1) : 1-13.

二级参考文献32

共引文献55

同被引文献261

引证文献32

二级引证文献223

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部