期刊文献+

Fredholm Integro-differential型方程的Legendre小波方法 被引量:4

Numbrical Solution of Fredholm Integro-differential Equations by Using Legendre Wavelets
下载PDF
导出
摘要 研究Legendre小波方法求解具有一阶导和二阶导类型的线性Fredholm integro-differential型方程,应用Legendre小波逼近法把这两类方程分别化为代数方程求解.实例说明,Legendre小波在解决这两类方程时的可行性和有效性. We use Legendre wavelets method to solve the first-order and the second-order linear Fredholm integro-differentiat equations. Legendre wavelet approximation is untilized to reduce the integro-differential to the algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
作者 石智 邓志清
出处 《数学研究》 CSCD 2009年第4期411-417,共7页 Journal of Mathematical Study
基金 国家自然科学基金资助项目(10671151) 陕西省教育厅专项科研计划项目(09JK539)
关键词 LEGENDRE小波 integro-differential型方程 积分算子矩阵 Legendre wavelets integro-differential equation operational matrix of integration
  • 相关文献

参考文献6

  • 1L M Delves, J L Mohamed. Computational methods for integral equations. Cambridge: Cambridge University Press, 1985.
  • 2Gu J S, Jiang W S. The Haar wavelets operational matrix of integration. Int. J. Syst. Sci., 1996, 27: 612-628.
  • 3M Razzaghi, S Yousefi. The legendre wavelets operational matrix of integration. Int. J. Syst. Sci., 2001, 32(4): 495-502.
  • 4M Razzaghi, S Yousefi. Legendre wavelets direct method for variational problems. Math. Comput. Simul. 2000, 53: 185-192.
  • 5M Tavassoli Kajani. Numerical solution of linear integro-differential equation by using sinecoine wacelets. Appied Mathematics and Computation. 2006, 180: 569-574.
  • 6Han Danfu, Shang Xufeng. Numerical solution of linear integro-differential equation by using CAS wavelet operational matrix of integration. Appied Mathematics and Computation, 2007, 194: 460-446.

同被引文献41

  • 1尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21
  • 2李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2005.
  • 3陈景华.Caputo分数阶反应-扩散方程的隐式差分逼近[J].厦门大学学报(自然科学版),2007,46(5):616-619. 被引量:14
  • 4PODLUBNY I. Fractional Differential Equations [M]. New York.. Academic Press, 1999.
  • 5ODIBAT Z. Approximations of Fractional Integrals and Caputo Fractional Derivatives[J]. Appl Math Comput, 2006,178: 527-533.
  • 6GORENFLO R,MAINARDI F. Time Fractional Diffusion.A Discrete Random Walk Approach [J]. Journal of Nonlinear Dynamics, 2000,29 : 129-143.
  • 7HUANG F,LIU F. The Fundamental Solution of the Space-time Fractional Advection Dispersion Equation[J], J Appl Math& Computing,2005,18(2) :339-350.
  • 8SAEEDI H. A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-differential Equation of Fractional Order [J]. Commun Nonlinear Sci Numer Simulat,2011,16:1154-1163.
  • 9LI Yuanlu, SUN Ning. Numerical Solution of Fractional Differential Equations Using the Generalized Block Pulse Operational Matrix [J]. Computers and Mathematics with Applications, 2011,62 : 1046-1054.
  • 10Babuska I,Yu Dchao. Asymptotically exact a-posteriori error estimator for biquadratic elements[J].Finite Elements in Analysis and Design, 1987,3(1):341-354.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部