期刊文献+

谢尔宾斯基地毯的复杂网络特征研究

Complex network properties of Sierpinski carpet
下载PDF
导出
摘要 引入了谢尔宾斯基地毯的网络拓扑性质,并在此基础上采用内连结点法,构造具有分形和小世界特性的网络,利用数学归纳的方法得到了该网络图的集聚系数、网络图的直径、平均路径长度及平均度分布等,证明了该网络的小世界特性;由网络的自相似性及其具有的精细结构得到该网络的分形特性,由此证明了其分形和小世界特性. Sierpinski carpet has many topological properties. Through adopting inner-link method on the Sierpinski carpet, a kind of Sierpinski network is constructed. Using mathematical induction method the clustering coefficient, the diameter, the average path length, and the average degree of the metwork are obtained, which testifies that the network is small-world. Finally, the box-counting dimension and similarity dimension are calculated as a measure of fractality of the network. The network' s similarity and elaborate structure demonstrates the fractality of the network.
出处 《系统工程学报》 CSCD 北大核心 2009年第6期734-738,共5页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70571007)
关键词 复杂网络 内连结点法 小世界特性 分形 谢尔宾斯基地毯 complex network inner-link method small-world properties fractal Sierpinski carp
  • 相关文献

参考文献11

  • 1Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks[J]. Nature, 1998, 393(4) : 440 -442.
  • 2Albert R, Jeong H, Barab6si A L. Diameter of the world-wide web [ J ]. Nature, 1999, 401 (9) : 130 -131.
  • 3Newman M E J, Watts D J. Renormalization group analysis of the small-world network mode[ J ]. Physical Review Letters, 1999, 263 (4/6) : 341 - 346.
  • 4Kleinberg J. Navigation in a small world [ J ]. Nature, 2000, 406 (8) : 845.
  • 5Song C, Havlin S, Makse H A. Self-similarity of complex networks[J]. Nature, 2005, 433(4) : 392 -395.
  • 6Dorogovtsev S N, Goltsev A V, Mendes J F F. Pseudofractal scale-free web[J]. Physical Review E, 2002, 65(6) : 1 -4.
  • 7Doye J P K, Massen. C.P. Serf-similar disk packings as model spatial scale-free networks[ J]. Physical Review E, 2005, 71 (1): 1-5.
  • 8章忠志,荣莉莉.具有无尺度拓扑与小世界效应的Sierpinski网络[J].系统工程学报,2007,22(4):337-343. 被引量:4
  • 9Barriere L, Comellas F, Dalfa C. Fractality and the small-world effect in Sierpinski graphs [ J ]. Journal of Physical, Part A, Mathematical and General, 2006, 39 (9) : 739 - 753.
  • 10张济忠.分形[M].北京:清华大学出版社,2001..

二级参考文献20

  • 1章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 2史定华.网络——探索复杂性的新途径[J].系统工程学报,2005,20(2):115-119. 被引量:24
  • 3陈振毅,汪小帆.无尺度网络中的拥塞及其控制[J].系统工程学报,2005,20(2):132-138. 被引量:15
  • 4章忠志,荣莉莉,周涛.一类无标度合作网络的演化模型[J].系统工程理论与实践,2005,25(11):55-60. 被引量:18
  • 5Majewski M.A tutorial of the realistic visualization of 3D Sierpinski fractals[J].Computers & Graphics,1998,22(1):129-142.
  • 6West D B.Introduction to Graph Theory[M].Upper Saddle River:Prentice-Hall,2001.
  • 7Zhou T,Yan G,Wang B H.Maximal planar networks with large clustering coefficient and power-law degree distribution[J].Physical Review E,2005,71:046141.
  • 8Albert R,Barabási A L.Statistical mechanics of complex networks[J].Reviews of Modern Physics,2002,74(1):47-97.
  • 9Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440-442.
  • 10Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部