期刊文献+

非线性系统的异步多速率数据融合估计算法研究 被引量:3

Study of Asynchronous Multirate Data Fusion Estimation Algorithm Based on Nonlinear Systems
下载PDF
导出
摘要 研究了一类非线性时变动态系统的状态估计问题,在不同传感器以不同采样率异步对同一目标进行观测时,提出了一种有效的数据融合估计算法.通过建立多尺度模型,将异步多速率系统形式转化为同步多速率系统;在每一步分别进行状态的预测和更新.在状态和观测预测时,采用强跟踪滤波(STF)算法;在状态更新时,采用有反馈分布式结构,顺序的利用每一个传感器的观测信息去更新状态的估计;从而基于给定的非线性系统模型,得到融合所有异步、多速率传感器观测信息的状态估计结果.该方法不需要对状态或观测进行扩维,计算量适当,从而保证了算法的实时性.仿真结果验证了算法的有效性. A kind of time-vary nonlinear dynamic system is studied in this paper.An effective data fusion state estimation algorithm is presented in time of multiple sensors observing a single target with different sampling rates asynchronously.The asynchronous multirate system is transformed to synchronous multirate system by use of the established multiscale models.In each step,to get the state estimate,state prediction is followed by state update.In state and measurements prediction step,strong tracking filter (STF) is used. While, in state update step, distributed structure with feedback is used, and the fused state estimate is obtained by se- quentially use of the measurements observed by different sensors. The augmentation of state or measurement dimensions are avoided by use of the presented method, and the real-time property of the algorithm is guaranteed. Simulation results show the effectiveness of the proposed algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第12期2735-2740,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60773044) 教育部创新团队支持计划资助项目
关键词 数据融合 非线性系统 异步 多速率 强跟踪滤波 data fusion nonlinear system asynchronous multirate strong tracking filter
  • 相关文献

参考文献10

  • 1Chui C K,Chen G. Kalman Filtering:With Real-Time Applications[ M]. New York: Springer, 1999,18 - 65.
  • 2康健,司锡才.被动定位跟踪中的非线性滤波技术[J].系统工程与电子技术,2004,26(2):160-162. 被引量:14
  • 3文成林.多尺度动态建模理论及其应用[M].北京:科学出版社,2007.
  • 4Henk A P B, Edwin A B. Particle filtering for stochastic hybrid systems[A]. 43rd IEEE Conference on Decision and Control [C]. Atlantics, Paradise Island, Bahamas: IEEE, 2004. 3221 - 3226.
  • 5Rudolph V D M, Eric A W, Simon I J. Sigma-Point Kalman filters for nonlinear estimation and sensor fusion appfications to integrated navigation [ A ]. AIAA Guidance, Navigation, and Control Conference and Exhibit[ C]. Providence, Rhode Island: AIAA,2004,5120:1 - 30.
  • 6Simon J J, Jeffrey K U. Unscented faltering and nonlinear estimarion[ J ]. Proceedings of the IEEE, 2004,92 ( 3 ) : 401 - 422.
  • 7Rambabu K, Bjarne F, Lars I. Applying the unscented Kalman filter for nonlinear state estimation[J]. Journal of Process Control, 2008,18(7) :753 - 768.
  • 8周东华,王庆林.有色噪声干扰的非线性系统强跟踪滤波[J].北京理工大学学报,1997,17(3):321-326. 被引量:32
  • 9文成林,陈志国,周东华.基于强跟踪滤波器的多传感器非线性动态系统状态与参数联合估计[J].电子学报,2002,30(11):1715-1717. 被引量:12
  • 10Yan L P,Liu B S,Zhou D H.An asynchronous multirate multisensor information fusion algorithm [ J ].IEEE Transactions on Aerospace and Electronic Systems, 2007,43 ( 3 ) : 1135 - 1146.

二级参考文献10

共引文献55

同被引文献21

  • 1崔文毅,潘夏表.桥梁检测车在桥梁检测中的应用[J].筑路机械与施工机械化,2006,23(12):42-44. 被引量:21
  • 2王媛媛,张军,朱衍波,林熙.异步多速率传感器不完全观测信息融合算法[J].华中科技大学学报(自然科学版),2009,37(S1):271-274. 被引量:4
  • 3郭徽东,章新华,宋元,陆强强.多传感器异步数据融合算法[J].电子与信息学报,2006,28(9):1546-1549. 被引量:12
  • 4D Willner,C B Chang,K P Dunn.Kalman Filter Configurations for Multiple Radar Systems. Massachusetts:Institute of Technology Lincoln Laboratory,1976.
  • 5P R Kalata.The tracking index:a generalized parameter for α-β and α-β-γ target trackers[J].IEEE Transactions on Aerospace and Electronic Systems,1984,20(2):174-181.
  • 6Taek L Song,Jason L Speyer.A stochastic analysis of a modified gain extend Kalman filter with application to estimation with bearing only measurements[J].Decision and Control,1983,30(12):1291-1296.
  • 7Simon Julier,Jeffrey Uhlmann.A new method for the nonlinear transformation of mean and covariance in filters and estimators[J].IEEE Transactions on Aerospace and Electronic Systems,2000,45(3):477-482.
  • 8Mark R Morelande,Subhash Challa.Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(1):252-270.
  • 9Dunham,Darin T.Tracking Multiple Targets in Cluttered Environments with the Probabilistic Multi-Hypothesis Tracking Filter. California:Naval Postgraduate School Monterey,1997.
  • 10Chong Chee-Yee,Castanon Greg,Nathan Cooprider,et al.Efficient multiple hypothesis tracking by track segment graph. 12th International Conference on Information Fusion. Seattle:IEEE,2009.2177-2184.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部