期刊文献+

等离子体流动控制研究进展 被引量:7

Recent Progresses in Plasma Flow Control
下载PDF
导出
摘要 介绍了国内外等离子体流动控制的研究进展,主要包括直流电晕放电、大气压辉光放电、表面介质阻挡放电等离子体流动控制。目前等离子体流动控制通常采用表面放电方式,电场强度低,属于弱电离放电,仍没有突破"离子风"技术,诱导的气流速度仅为8m/s,不具有实用价值。一种高压纳秒脉冲放电成为等离子体流动控制研究领域中的一个新的热点研究方向,但是纳秒脉冲作用周期的占空比小,能否用一个小占空比获得一个更高的作用效率是一个值得深入探讨的问题。等离子体流动控制技术要想具有实际应用价值,就必须提高等离子体可控的来流速度到100m/s以上。因此必须从根本上解决等离子体激励器的现存问题,在深化研究等离子体流动控制作用机理的基础上,逐步提高等离子体激励器性能,这也是等离子体流动控制领域急待解决的问题。 Plasma is one of newly emerging aerodynamic flow control technologies, with advantages of no moving parts and a short response time, which will become a new research field of great importance in the aerodynamics and plasma physics. This paper reviews the recent progresses in plasma flow control, including DC corona discharge, one atmosphere uniform glow discharge, and surface dielectric barrier discharge. At present, the surface discharge is commonly employed to control plasma flow, which concerns a weakly ionization discharge for low electric fields and the technology of "ion wind" does not have breakthroughs, so the maximum induced neutral gas velocity is only 8 m/s, without any useful value. The pulsed-periodic nanosecond excitation surface dielectric barrier discharge shows a higher efficiency for flow control, and beeomes a promising research direction on plasma flow control. But the duty cycle of pulsed-periodic nanosecond is small, so it is still an issue worth to be explored for a small duty cycle to produce a great action efficiency. The plasma flow control techniques are of practical value, it is necessary to increase the velocity of controlled air flow up to over 100 m/s. Therefore, it is necessary to solve the problems in plasma actuators. An urgent problem needs to be solved in the field of plasma flow control is to improve the performance of plasma actuators based on studies onthe mechanism of plasma flow control.
出处 《科技导报》 CAS CSCD 北大核心 2009年第24期81-85,共5页 Science & Technology Review
基金 国家自然科学基金项目(60801010 50778028) 中国高技术发展计划(863计划)项目(2008AA06Z317)
关键词 等离子体 流动控制 电晕放电 介质阻挡放电 大气压辉光放电 plasma flow control DC corona discharge dielectric barrier discharge one atmosphere uniform glow discharge
  • 相关文献

参考文献29

  • 1Boeuf J P, Lagmich Y, Unfer T, et al. Electrohydrodynamic force in dielectric barrier discharge plasma actuators [J]. Journal of Physics D: Applied Physics, 2007, 40 (3): 652-662.
  • 2Patel M P, Ng T T, Vasudevan S, et al. Scaling effects of an aerodynamic plasma actuator[R]. AIAA-2007-0635, Reston, VA: AIAA, 2007.
  • 3Mullins J. Will plasma revolutionize aircraft design [N]. Space Daily, 2000-10-28.
  • 4孙宗祥.等离子体减阻技术的研究进展[J].力学进展,2003,33(1):87-94. 被引量:36
  • 5张攀峰,王晋军,施威毅,武哲.等离子体激励低速分离流动控制实验研究[J].实验流体力学,2007,21(2):35-39. 被引量:31
  • 6Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control [J]. Progress in Aerospace Sciences, 2005, 41 (8): 642-668.
  • 7Porter C O, Baughn J W, McLaughlin T E, et al. Plasma actuator force measurements[J]. AIAA Journal, 2007, 45(7): 1562-1570.
  • 8Goeksel B. MEMS plasma actuators for MAV applications [R]. DGLR UAV-Workshop, Manching, Germany, 2006.
  • 9李钢,聂超群,朱俊强,李汉明,张翼.介质阻挡放电等离子体流动控制技术的研究进展[J].科技导报,2008,26(4):87-92. 被引量:19
  • 10Moreau E. Airflow control by non-thermal plasma actuators [J]. Journal of Physics D-Applied Physics, 2007, 40(3): 605-636.

二级参考文献136

共引文献195

同被引文献119

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部