期刊文献+

采用多源图像分形特征的多目标检测方法 被引量:2

Multi-target Detection Using Fractal Feature Fusion of Different Source Image
下载PDF
导出
摘要 针对多目标的检测,本文提出一种采用多源图像分形特征的特征级融合检测方法。首先对多目标检测的特点进行了分析,对分形理论进行了介绍,然后详细介绍了该融合检测算法的思路和原理。该算法首先由红外图像阈值分割出部分目标;然后利用分维数图的统计特征可以增强分形维数的奇异性,在可见光图像的分维数图中搜索与已检测出的目标区域具有相近分形统计特征的区域,进行标记;再根据"距离相似度准则"进行目标的聚类识别,排除背景干扰,最终检测出全部目标。实验结果表明该融合检测算法能有效地进行多目标的检测与识别。 As to the detection of multi-target, a feature-level fusion detection scheme which uses fractal feature of multi-source images is proposed. Firstly, the character of multi-target detection is analyzed, the fractal theory is introduced, and then the theory of fusion detection scheme is introduced in detail. Some targets are segmented in infrared image. Afterwards, using the statistic character can build up irregularity of fractal dimension, and areas are searched and signed in the visible light fractal dimension image, which has close fractal statistic feature to the target area detected. At last, the whole targets are successfully detected after clustering and recognition based on the rule of distance similarity degree. The experimental results show that the fusion detection scheme can detect and recognize target effectively
出处 《光电工程》 CAS CSCD 北大核心 2009年第12期11-15,共5页 Opto-Electronic Engineering
基金 电子科技大学青年科技基金
关键词 多目标检测 图像融合 分形特征 统计特征 multi-target detection image fusion fractal feature statistical feature
  • 相关文献

参考文献12

  • 1张丈涛.视频多目标分割、宏特征描述与状态检测技术[D].成都:电子科技大学,2000.
  • 2Tong C S, Yuen P C, Wong Y Y. Dividing Snake Algorithm For Multiple Object Segmentation [J]. Opt.Eng(S0091-3286), 2002, 41(12): 3177-3182.
  • 3余杨,黄惟一.光电混合处理系统识别高相似度工业零件图象的研究初探[J].中国图象图形学报(A辑),2002,7(7):633-637. 被引量:5
  • 4张维娜,李长河.用于多目标检测与识别的视觉系统研究[J].工业控制计算机,1998,11(4):4-5. 被引量:1
  • 5Chan L A, Der S Z, Nasrabad N N. Dual-band FLIR fusion for automatic target recognition [J]. Information Fusion (S1566-2535), 2003, 4(1): 35-45.
  • 6Therrien C W, Scrofani J W, Krebs W K. An adaptive technique for the enhanced fusion of low-light visible with uncooled thermal infrared imagery[C]//Proceedings of the 1997 International Conference on Image Processing, Santa Barbara, CA, USA, Oct 26-29, 1997. Los Alamitos, CA, USA: IEEE Comp Soc, 1997: 405-408.
  • 7Mandelbrot Benoit B. The Fractal Geometry of Nature [M]. San Francisco: Freeman, 1982.
  • 8Pentland Alex P. Fractal-based description of natural scenes [J]. IEEE Trans. on PAMI(S0162-8828), 1984, 6(6): 661-674.
  • 9肯尼思·法尔科内.分形几何-数学基础极其应用:第1版[M].沈阳:东北大学出版社,1991.
  • 10赵亦工.自然背景图像的分形模型与人造目标自动识别[J].系统工程与电子技术,1997,19(2):9-16. 被引量:4

二级参考文献24

  • 1赵亦工,朱红.自然背景中人造目标的自适应检测[J].电子学报,1996,24(4):17-20. 被引量:24
  • 2成罡,袁石夫,邬敏贤,金国藩.联合击中击不中变换相关器[J].光学学报,1997,17(3):318-324. 被引量:7
  • 3付京逊 R.C.冈萨雷斯 等.机械人学控制、传感技术、视觉、智能[M].北京:中国科学技术出版社,1989..
  • 4Ponsford A M,Sevgi L,Chan H C. An Integrated Maritime Surveillance System Based on High-Frequency Surface-Wave Radars. 2: Operational Status and System Performance [J]. IEEE Antennas and Propagation Magazine ,2001,43(5) :52-63.
  • 5Khan R,Gamberg B,Power D,et al. Target Detection and Tracking with a High Frequency Ground Wave Radar[J]. IEEE Journal of Oceanic Engineering,1994,19(4): 540-548.
  • 6Liu Yong-tan. Target Detection and Tracking with a High Frequency Ground Wave Over-the-Horizon Radar[EB/OL]. http://ieeexplore. ieee. org/iel3/4327/12454/00573765. pdf?. Oct,1996.
  • 7Barrick D, Pederson L. HF Surface Wave Radar: Revisiting a Solution for EEZ Ship Surveillance [J]. EEZ International, 2004 (Spring): 35-37.
  • 8Barrick D, Snider J. The Statistics of HF Sea-Echo Doppler Spectra [J]. IEEE Journal of Oceanic Engineering, 1977,2(1): 19-28.
  • 9Rohling H. Radar CFAR Thresholding in Clutter and Multiple Target Situations [J]. IEEE Tran on AES,1983,19(3): 608-621.
  • 10Shor M, Levanon N. Performances of Order Statistics CFAR [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991,27(2): 214-224.

共引文献28

同被引文献26

  • 1赵渊博,赵慧洁.挠性接头薄筋厚度在线测量图像分割方法研究[J].光学精密工程,2005,13(z1):153-157. 被引量:6
  • 2汪志云,黄梦为,胡钋,饶强.基于直方图的图像增强及其MATLAB实现[J].计算机工程与科学,2006,28(2):54-56. 被引量:60
  • 3丁天怀,郏东耀.利用多颜色空间特征融合方法检测近似目标[J].清华大学学报(自然科学版),2006,46(2):176-179. 被引量:18
  • 4ZHANG F,BRESEE R.Fabric defect detection and classification using image analysis[J].Textile Research Journal(S0040-5175),1995,65(1):1–9.
  • 5CHETVERIKOV D,HANBURY A.Finding defects in texture using regularity and local orientation[J].Pattern Recognition(S0031-3203),2002,35:203–218.
  • 6SEZER O G,ERCIL A,ERTUZUN A.Using perceptual relation of regularity and anisotropy in the texture with independent components for defect detection[J].IEEE Pattern Recognition(S0031-3203),2007,40(1):121–133.
  • 7RUSEN Meylani.2-D Iteratively reweighted least squares lattice algorithm and its application to defect detection in textured images[J].Transactions on Fundamentals of Electronics,Communications and Computer Sciences(S0916-8508),2006,89(A5):1484–1494.
  • 8Luc Vincent,Pierre Soille.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),1991,13(6):583-595.
  • 9NAJMAN Laurent,SCHMITT Michel.Geodesic Saliency of Watershed Contours and Hierarchical Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),1996,12(18):1163-1173.
  • 10WANG W X.Binary Image Segmentation of Aggregates based on Polygonal Approximation and Classification of Concavities[J].Pattern Recognition(S0031-3203),1998,31(10):1503-1524.

引证文献2

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部