期刊文献+

一种角度无关的Gabor-SVM昆虫识别 被引量:10

Angle Invariant Gabor-SVM for Insect Recognition
下载PDF
导出
摘要 传统的昆虫识别方法费时费力,应用图像处理技术提取昆虫图像视觉特征,实现昆虫机器自动识别,可以解决传统方法的不足.本研究依据纹理是昆虫分类的重要特征,应用角度无关的Gabor滤波器提取昆虫图像的纹理特征,然后用SVM算法分类,实验结果表明:角度无关Gabor-SVM昆虫识别方法正确率为80%,是比传统Gabor和灰值游程矩阵更好的识别算法,该方法能较准确识别昆虫,省时省力. The traditional method of recognizing insects is time-consuming. Its solution is using image processing technology to extract visual features of insect images and then machines automatically identify insects. According to texture is important feature for insects recognition, in our research, angle invariant Gabor is used to extract texture feature of insects images, and then use SVM algorithm to classify insects. The experimental results show that:the correct rate of angle invariant Gabor-SVM algorithm for insect recognition is 80%, which is better than traditional Gabor and run length algorithm, invariant Gabor-SVM algorithm can more accurately identify insects and time-saving.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第1期143-146,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(60736008)资助 国家“八六三”高技术研究发(2008AA01Z301)资助 国家自然科学基金项目(60873094)资助
关键词 角度无关的Gabor 纹理 SVM 昆虫识别 angle invariant gabor texture SVM insect recognition
  • 相关文献

参考文献11

二级参考文献56

  • 1韦娜,耿国华,周明全.基于内容的图像检索系统性能评价[J].中国图象图形学报(A辑),2004,9(11):1271-1276. 被引量:22
  • 2刘兴文,姜小光.不同时相遥感图像光机复合处理提取土地荒漠化信息研究[J].干旱区地理,1996,19(3):1-7. 被引量:14
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 4JainA K,Farrokhnia F. Unsupervised Texture Segmentation Using Gabor filters[C]. Pattern Recognition,1991,23(12): 1167-1186.
  • 5Manjunath M S,Chellappa R. Malsburg C V D. A Feature Based Approach to Face Recognition[C]. Proc. IEEE Conf. CVPR,1992: 372-378.
  • 6Manjunath B S,Ma W Y. Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 1996,18(8):837-842.
  • 7李金宗.模式识别导论[M].高等教育出版社,2000.360-370.
  • 8Zayas I Y et al. Image analysis for texture pattern recognition of wheats[J]. Cereal Chem, 1986,67(1): 264-272.
  • 9Funt B, Finlayson G. Color constant color indexing[J]. IEEE Trans Pattern Analysis Machine Intelligence, 1995, 17,522-529.
  • 10Healey G, Slater D. Global color cnstancy: recognition of objects by use of illumination-invariant properties of color distribution[J]. J. opt. Soc. Am. A, 1994,11,3003-3010.

共引文献92

同被引文献193

引证文献10

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部