期刊文献+

Hopf Bifurcation Analysis and Control for Electrical System of Military Vehicle

Hopf Bifurcation Analysis and Control for Electrical System of Military Vehicle
下载PDF
导出
摘要 Electrical system of military vehicle is a typical parameterized nonlinear system where complicated bifurcations may exist and threaten its safe and stable operation. An algebraic criterion for Hopf bifurcation is presented briefly and applied to find Hopf bifurcation point of the electrical system with automatic voltage regulator(AVR) dynamics in military vehicle. Hopf bifurcation controllers are designed for this electrical system by using wash-out filter,linear feedback,nonlinear feedback and their combination. The linear feedback control makes the system bring Hopf bifurcation at preferable parameter,the nonlinear feedback control modifies the type of the bifurcation,and the wash-out filter enhances the system damping,thus,the Hopf bifurcation is eliminated and the electrical system stability is ensured. Simulation results show the controller's validity. Electrical system of military vehicle is a typical parameterized nonlinear system where complicated bifurcations may exist and threaten its safe and stable operation. An algebraic criterion for Hopf bifurcation is presented briefly and applied to find Hopf bifurcation point of the electrical system with automatic voltage regulator (AVR) dynamics in military vehicle. Hopf bifurcation controllers are designed for this electrical system by using wash-out filter, linear feedback, non- linear feedback and their combination. The linear feedback control makes the system bring Hopf bifurcation at preferable parameter, the nonlinear feedback control modifies the type of the bifurcation, and the wash-out filter enhances the system damping, thus, the Hopf bifurcation is eliminated and the electrical system stability is ensured. Simulation results show the controller's validity.
出处 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期246-250,共5页 Defence Technology
基金 Sponsored by Foundation for Science Research Development of Nanjing University of Science and Technology
关键词 automatic control technology electrical system of military vehicles Hopf bifurcation bifurcation control STABILITY automatic control technology electrical system of military vehicles Hopf bifurcation bifurcation control stability
  • 相关文献

参考文献11

  • 1王庆红,周双喜,胡国根.电力系统静态分岔及其控制[J].电网技术,2004,28(13):6-12. 被引量:10
  • 2张继业,杨翊仁,曾京.Hopf分岔的代数判据及其在车辆动力学中的应用[J].力学学报,2000,32(5):596-605. 被引量:31
  • 3邓集祥,马景兰.电力系统中非线性奇异现象的研究[J].电力系统自动化,1999,23(22):1-4. 被引量:18
  • 4ZANG Ke-mao.The transient performance analysis of electrical systems in military vehicles[ M][]..2002
  • 5Wang H O,Abed E H,Hamdan A M.Bifurcations , chaos ,and crisesin voltage collapse of a model power sys- tem[].IEEE Trans on Circ and sys-Ⅰ:Fundamental Theory and Applications.1994
  • 6CHEN Guan-rong.Controlling bifur-cations in dynamical systems[].Control Theory and Applications.2001
  • 7Chen G R,Jorge L M,WANG HO.Bifurcation control : theories,methods ,and applications[].Int J of Bifurca- tion Chaos.2000
  • 8Mohamed S S,Munther A H,Abed E H,et al.Delaying instability and voltage collapse in power systems using SVCs with washout filter-aided feed- back[].American Control Conference.2005
  • 9Ajjarapu V,Lee B.Bifurcation theory and its application tononlinear dynamical phenomena in an electrical power system[].IEEE Transactions on Power Systems.1992
  • 10Tan C W,Varghese M,Varaiya P,et al.Bifurcation, chaos, and voltage collapse in power systems[].Proceedings of Tricomm.1995

二级参考文献28

  • 1曾京.车辆系统的蛇行运动分叉及极限环的数值计算[J].铁道学报,1996,18(3):13-19. 被引量:45
  • 2彭志炜,胡国根,韩祯祥.应用分支理论研究电力系统电压稳定性[J].电力系统自动化,1997,21(2):42-44. 被引量:8
  • 3李光琦.电力系统暂态分析[M].北京:水利电力出版社,1993..
  • 4Troger H.分岐理论-对数学家与工程师的挑战[J].力学进展,1986,16(4):535-548.
  • 5Zhu W,IEEE Trans Power Systems,1996年,11卷,3期
  • 6李光琦,电力系统暂态分析(第2版),1993年
  • 7凌复华(译),力学进展,1986年,16卷,4期,535页
  • 8Kwanty H G, FischlRF, NwankpaCO. Local bifurcation in power system: theory, computation and application[J]. Proceedings of the IEEE, 1995, 83(11): 1456-1483.
  • 9Chiang H D, Conneen T P, Flueck A J. Bifurcations and chaos in electric power systems: numerical studies[J]. Journal of the Franklin Institute, 1994, 331B(6): 1001-1036.
  • 10Dobson I, Lu L M. Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems[J]. IEEE Trans on Automation and Control, 1992, 37(10):1616-1620.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部