期刊文献+

基于改进型阴性选择算法的车辆故障检测方法研究 被引量:3

Research on Vehicle Fault Diagnosis Method Based on Improved Negative Selection Algorithm
下载PDF
导出
摘要 根据现有的阴性选择算法提出适于车辆故障检测的改进型阴性选择算法。在改进型算法中,对数据串编码、自体集合的生成、检测器数目的确定进行了研究。对某军车上使用的防滑差速器正常工作和故障状态下的样本数据进行故障检测,结果表明了改进型阴性选择算法的有效性,并与神经网络检测方法所得到的结果进行比较,表明了改进型阴性选择算法具有较高的检测准确度。 According to the negative selection algorithm in existance, an improved negative selection algorithm which adapts to vehicle online testing was presented. The methods of coding data string, creating self sets and determining number of detectors in the improved negative selection algorithm were analyzed. The detected results by the noise data of normal and fault non-slipping differential used in a certain military vehicle show that the improved algorithm is effective and more accurate compared with the neural network testing method.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第12期1722-1726,共5页 Acta Armamentarii
基金 浙江省科技计划项目(2007C21081)
关键词 公路运输 阴性选择算法 在线检测 故障诊断 车辆 差速器 road transportation negative selection algorithm online testing fault diagnosis vehicle differential mechanism
  • 相关文献

参考文献13

  • 1Forrest S, Perelson A, Allen L. Self- nonself discrimination in a computer[C]//Proc of the IEEE Symposium on Research in Security and Privacy. US: IEEE, 1994:202 - 212.
  • 2Forrest S, Somayaja A, Ackley D. Building diverse computer systemiC]//Proceedings of the Sixth Workshop on Hot Topics in Operating System. Los Alamitos, CA: IEEE Computer Society Press, 1997:67 - 72.
  • 3Forrest S, Hofmeyr S A. Immunology as information processing [M]. Oxford: Oxford University Press, 2000:1 - 10.
  • 4Tarakanov, Alexander. Immunocomputing for intelligent intrusion detection[J]. IEEE Computational Intelligence Magazine, 2008, 3(2) :22 - 30.
  • 5公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 6Kim Dong Hwa, Abraham Ajith. Optimal learning of fuzzy neural network using artificial immune algorithm [ J ]. Neural Network World, 2008, 18(2) :147 - 170.
  • 7孟庆华,周晓军,吴跃成,杨辰龙,庞茂.基于小波免疫系统的车辆总成故障检测[J].汽车工程,2004,26(5):619-622. 被引量:10
  • 8Smith R, Forrest S. Searching for diverse, cooperative populations with genetic algorithms [ J ]. Evolutionary Computation, 1993,1(2) :127 - 149.
  • 9Frenando Esponda, Forrest S. Detector coverage under the r-contiguous bits roaching rule, technical report TR-CS-2002-03[ R]. US: Department of Computer Science, University of New Mexico, 2002.
  • 10王光研,许宝杰.RBF神经网络在旋转机械故障诊断中的应用[J].机械设计与制造,2008(9):57-58. 被引量:21

二级参考文献56

共引文献73

同被引文献95

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部