期刊文献+

现实复杂情形下的SIRS型传染病模型及其控制策略 被引量:11

SIRS Epidemic Model under Real Complex Circumstances and Its Control Strategy
原文传递
导出
摘要 研究现实复杂情形下(包含非线性传染率、有隔离措施、群外个体迁入、生育与死亡以及疾病可水平和垂直传播等)的SIRS型传染病模型。首先证明该传染病模型的无病平衡点与地方病平衡点的唯一存在性及渐近稳定性;然后从基本再生数以及折衷考虑人道主义、救治代价与疾病控制效果的原则,针对流行于人类的传染病,提出"优先隔离染病个体、提高疾病治愈率以及控制传染病垂直传播"的传染病综合控制策略;最后,数值仿真验证了模型的稳态特性以及综合控制策略的有效性。 An SIRS infectious disease model under such real complex circumstances that the transmission rate of disease is non-linear; quarantine measures were partially taken for infectious individuals; immigrations, fertility and death of individuals were permitted; and finally diseases could be both directly and vertically transmitted, was studied. The disease-free and epidemic equilibriums were calculated and proved to be asymptotically stable with certain conditions. According to the basic reproductive number and a tradeoff among humanitarianism, costs of curing all infectious and control effect, a general strategy for controlling human being infectious disease, i.e., first quarantining infectious individuals, then raising the cure rate, and finally controlling vertical transmissions, was suggested. Finally, equilibriums of SIRS model and the effectiveness of general strategy were validated by numerical simulations.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第1期195-200,共6页 Journal of System Simulation
基金 国家自然科学基金(70801019 70771029) 广东省自然科学基金(04009475) 广东省哲学社会科学"十一五"规划学科共建项目基金(06GO03) 广东工业大学博士项目启动基金(063032)
关键词 传染病模型 SIRS 隔离 迁入 垂直传播 控制策略 epidemic models SIRS isolation immigration vertical infection control strategy
  • 相关文献

参考文献12

  • 1Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 2Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size [J]. Mathematical and computer modeling (S0895-7177), 2002, 35(11-12): 1235-1243.
  • 3Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2) 389-394.
  • 4Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and purse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.
  • 5Naoki Yoshida, Tadayuki Hara. Global stability of a delayed SIR epidemic model with density dependent birth and death rates [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2): 339-347.
  • 6Franceschetti A, Pugliese, A. Threshold behavior of a SIR epidemic model with age structure and immigration [J]. Journal of Mathematical Biology (S0303-6812), 2008, 57(1): 1-27.
  • 7李健全,张娟,马知恩.一类带有一般接触率和常数输入的流行病模型的全局分析[J].应用数学和力学,2004,25(4):359-367. 被引量:42
  • 8石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率βI^pS^q的SI模型分析[J].高校应用数学学报(A辑),2008,23(1):7-12. 被引量:2
  • 9杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 10Hui-Ming Wei, Xue-Zhi Li, Maia Martcheva. An epidemic model of a vector-borne disease with direct transmission and time delay [J]. J. Math. Anal. Appl. (S0022-247X), 2008, 342(2): 895-908.

二级参考文献21

  • 1李建全,王峰,马知恩.一类带有隔离的传染病模型的全局分析[J].工程数学学报,2005,22(1):20-24. 被引量:26
  • 2Wu Lih-Ing, Feng Zhilan. Homoclinic bifurcation in an SIQR model for childhood diseases[J]. Journal of Differential Equations, 2000, 168 : 150-- 167.
  • 3Herbert Hethcote, Ma Zhien, Liao Shengbing. Effects of quarantine in six endemic models for infectious diseases [J]. MathBiosci, 2002, 180: 141--160.
  • 4马知恩,周义仓.常微分方程定性和稳定性方法[M].北京:科学出版社,2004.
  • 5Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 6Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 7Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 8Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 9Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 10Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.

共引文献66

同被引文献85

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部