期刊文献+

一种基于过程神经元网络辨识的PID控制模型及方法 被引量:2

PID control model and method based on process neural network identification
下载PDF
导出
摘要 针对非线性动态系统PID过程控制问题,提出了一种基于过程神经元网络辨识的PID参数自适应整定的控制模型和方法。利用过程神经元网络对于动态系统时变输入/输出信号的学习机制,在某种最优控制律下通过对被控对象进行辨识来追踪被控对象的输出对控制输入变化的灵敏度信息,实现参数自适应匹配的PID控制。给出了基于过程神经元网络辨识的PID控制系统结构以及相应的实现机制,实验结果验证了模型和算法的有效性。 Concerning PID process control of nonlinear dynamic system, a control model and its method of PID parameter adaptive tuning based on Process Neural Network (PNN) identification were proposed in the paper. Using the learning mechanism of PNN for time-varying input-output signals of dynamic system, the PID control with parameter adaptive matching was implemented by tracing change sensitivity information of the output with the controlling input of the controlled object by identifying the controlled object under certain optimal control rule. The PID control system structure and corresponding realization mechanism based on PNN identification were presented in the paper and the experimental results verify the effectiveness of the model and algorithm.
出处 《计算机应用》 CSCD 北大核心 2010年第1期233-235,239,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60572174) 黑龙江省科技厅科学研究项目(GZ07A103)
关键词 非线性动态系统 PID控制 参数辨识 过程神经元网络 nonlinear dynamic system PID control parameter identification process neural network
  • 相关文献

参考文献12

二级参考文献50

  • 1刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 2方红庆,沈祖诒.基于改进粒子群算法的水轮发电机组PID调速器参数优化[J].中国电机工程学报,2005,25(22):120-124. 被引量:73
  • 3金鑫,谭文,李志军,刘吉臻.典型工业过程鲁棒PID控制器的整定[J].控制理论与应用,2005,22(6):947-953. 被引量:30
  • 4哥德温GC 潘恩RL.动态系统辨识[M].北京:科学出版社,1983..
  • 5史密斯CL.数字计算机过程控制[M].北京:石油工业出版社,1982..
  • 6[1]Chen G. Conventional and fuzzy control PID controller: an overview [J]. International Journal of Intelligent Control and Systems,1996,1(2):235~246.
  • 7[3]Xu Y, Hollerbach J M, Ma D. A nonlinear PD controller for force and contact transient control [J]. IEEE Control System Magazine,1995,15( 1 ) :15 ~21.
  • 8[6]Leonid R, Omar G, Anna B. PID plus fuzzy controller structures as a design base for industrial applications [ J ]. Engineering Applications of Artificial Intelligence,2000,13(4) :419 ~430.
  • 9[7]Kosko B. Fuzzy Engineering [ M ]. New Jersey: Prentice Hall,1997.
  • 10[8]Mann G K I, Hu B G, Gosine R G. Analysis of direct action fuzzy PID controller structures [ J]. IEEE Transactions on System,Man,and Cybernetics - Part B: Cybernetics, 1999,29 ( 3 ) :371 ~ 388.

共引文献250

同被引文献13

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部