期刊文献+

跟随伺服控制系统的输入-状态稳定性

Input-to-State Stability on Following Servo Control System
下载PDF
导出
摘要 针对跟随控制系统和"领导者"智能体队形控制系统相似的特点,通过输入-状态稳定性(Input-to-State Stability ISS)分析了跟随控制系统的稳定性,验证系统控制器的性能。跟随控制系统由主动系统和跟随系统构成,跟随系统按照确定的跟随模型跟随主动系统。跟随控制系统输入-状态稳定性把主动系统的控制输入与跟随控制系统内部状态联系起来,并描述了控制输入对系统稳定性能的影响方式。相对其他分析法,采用ISS分析跟随系统的稳定性具有不依赖于误差传播的衰减和确定最差边界及计算简单等优点。试验结果表明,采用ISS分析得到的控制器的系统是稳定的,实际系统运行情况验证:在控制器控制下,跟随系统按照确定的跟随模型跟随主动系统,在主动系统的有界外界输入情况下,跟随性能有了显著的提高。 Aiming at the similarity of following control system and "guider" intelligent team formation, analyze the stability of following servo control system by (Input-to-State Stability ISS) and validate the performance of system controller. The following control system consists of active system and following system, and its following system follows the active system according to certain following model. The ISS relates the active system input to internal state of the following control system and characterizes the way this input affects the stable performance. The ISS that is used to analyze the stability of following control system, compared to other stability analysis that does not r^quire attenuation of propagating error, and provides the bounds of stabile critical case. The experimentation result demonstrates that the system is stable based ISS controller. The running situation shows that under the controlling of controller, following system follows the active system according to certain following model and the following performance is improved based on the external boundary input of active system.
出处 《兵工自动化》 2010年第1期80-82,84,共4页 Ordnance Industry Automation
关键词 伺服控制 跟随控制系统 稳定性 输入-状态稳定性 Servo control Following control system Stability Input-to-state stability
  • 相关文献

参考文献5

二级参考文献16

  • 1[1]Joe Q S,Badgwell T A.A survey of industrial model predictive control technology.Control Engineering Practice,2003,11(7):733-764
  • 2[2]Mayne D Q,Rawlings J B,Rao C V,Scokaert P O M.Constrained model predictive control:stability and optimality.Automatica,2000,36(6):789-814
  • 3[3]Chisci L,Rossiter J A,Zappa G.Systems with persistent disturbances:predictive control with restricted constraints.Automatica,2001,37(7):1019-1028
  • 4[4]Michalska H,Mayne D Q.Robust receding horizon control of constrained nonlinear systems.IEEE Transactions on Automatic Control,1993,38(11):1623-1633
  • 5[5]Scokaert P O M,Mayne D Q.Min-max feedback model predictive control for constrained linear systems.IEEE Transactions on Automatic Control,1998,43(8):1136-1142
  • 6[6]De Nicolao G,Magni L,Scattolini R.On the robustness of receding-horizon control with terminal constraints.IEEE Transactions on Automatic Control,1996,41(3):451-453
  • 7[7]Chen H,Scherer C W,Allgower F.A game theoretic approach to nonlinear robust receding horizon control of constrained systems.In:Proceedings of American Control Conference.New Mexico,USA:IEEE,1997.3073-3077
  • 8[9]Magni L,Nijmeijer H,der Van Schaft A J.A recedinghorizon approach to the nonlinear H∞ control problem.Automatica,2001,37(3):429-435
  • 9[10]Magni L,Scattolini R.Control design for nonlinear systems:trading robustness and performance with the model predictive control approach.IEE Proceedings Control Theory and Applications,2005,152(3):333-339
  • 10[13]Limon D,Alamo T,Salas F,Camacho E F.Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties.Automatics,2006,42(5):797-803

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部