期刊文献+

CONVERGENCE ANALYSIS OF RUNGE-KUTTA METHODS FOR A CLASS OF RETARDED DIFFERENTIAL ALGEBRAIC SYSTEMS 被引量:4

CONVERGENCE ANALYSIS OF RUNGE-KUTTA METHODS FOR A CLASS OF RETARDED DIFFERENTIAL ALGEBRAIC SYSTEMS
下载PDF
导出
摘要 This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result. This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期65-74,共10页 数学物理学报(B辑英文版)
基金 supported by NSFC (10871078)
关键词 CONVERGENCE Runge-Kutta Methods Lagrange interpolation retarded dif-ferential algebraic systems convergence Runge-Kutta Methods Lagrange interpolation retarded dif-ferential algebraic systems
  • 相关文献

参考文献4

二级参考文献27

  • 1K. J. In ’t Hout.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J]. BIT . 1992 (4)
  • 2K. Burrage,W. H. Hundsdorfer.The order ofB-convergence of algebraically stable Runge-Kutta methods[J]. BIT . 1987 (1)
  • 3Marino Zennaro.P-stability properties of Runge-Kutta methods for delay differential equations[J]. Numerische Mathematik . 1986 (2-3)
  • 4Alfredo Bellen,Marino Zennaro.Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method[J]. Numerische Mathematik . 1985 (2)
  • 5Herbert Arndt.Numerical solution of retarded initial value problems: Local and global error and stepsize control[J]. Numerische Mathematik . 1984 (3)
  • 6Zennaro M.P-stability properties of Runge-Kutta methods for delay differential equations. Numerical Mathematics . 1986
  • 7In’t Hout KJ.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equaitons. Borsa Internazionale del Turismo . 1992
  • 8Li Shoufu.Stability and B-convergence of general linear methods. Journal of Computational and Applied Mathematics . 1989
  • 9Arndt,H.Numerical Solution of Retarded Initial Value Problems: Local and Global Error and Stepsize Control. Numerical Mathematics . 1984
  • 10K.Dekker,J.G.Verwer.Stability of Runge-Kutta methods for stiff nonlinear dif-ferential equations. CWI Monographs 2 . 1997

共引文献26

同被引文献20

  • 1周少波,胡适耕.RAZUMIKHIN-TYPE THEOREMS OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS[J].软件工程师,2009(4). 被引量:8
  • 2倪涛洋,黎培兴,李彩霞.中立型线性微分方程的稳定性[J].工程数学学报,2005,22(1):144-146. 被引量:8
  • 3Ascher U M,Petzold L R.The numerical solution of delay-differential-algebraic equations of retarded and neutral type[J].SIAM Journal on Numerical Analysis,1995,32(5):1635-1657.
  • 4Hauber R.Numerical treatment of retarded differential-algebraic equations by collocation methods[J].Advances in Computational Mathematics,1997,7(4):247-264.
  • 5Petzold L R.Differential-algebraic equations are not ODEs[J].SIAM Journal on Scientific and Statistical Computing,1982,3(3):367-384.
  • 6Zhu W L,Petzold L R.Asymptotic stability of linear differential-algebraic equations and numerical methods[J].Applied Numerical Mathematics,1997,24(2):247-264.
  • 7Campbell S L,Linh V H.Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions[J].Applied Mathematics and Computation,2009,208(2):397-415.
  • 8Shampine L F,Gahinet P.Delay differential-algebraic equations in control theory[J].Applied Numerical Mathematics,2006,56(3):574-588.
  • 9Baker C T H,Paul C A H,Tian H.Differential algebraic equationa with after-effect[J].Journal of Computational and Applied Mathematics,2002,140(1):63-80.
  • 10Xu Y,Zhao J J,Dong S Y,et al.Stability of the Rosenbrock methods for the neutral delay differentialalgebraic equations[J].Applied Mathematics and Computation,2005,168(2):1128-1144.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部