摘要
利用时域有限差分方法(FDTD)求解含高阶色散效应的非线性薛定谔方程(NLS),数值模拟结果表明:FDTD方法的计算结果与传统的分步傅里叶变换法的模拟结果完全一致,三阶色散效应使孤子脉座沿传播方向的右侧出现振荡,而四阶色散效应使孤子脉座双侧出现振荡,严重影响了孤子的传输。FDTD方法原理简单,易于编程,其随时间空间推进的方式可方便地给出了孤子传输的全过程。
The Finite Difference Time Domain (FDTD) method is presented for solving the nonlinear Schr? dinger equation (NLS)with the high -order dispersion effect, numerical results show that the results obtained by the FDTD agree well with that of the traditional the Split - step Fourier transform method. The third - order dispersion effect causes the soliton pulse produce oscillation on a single right side of propagation direction and the fourth - order effect causes to oscillate on both sides of the soliton pulse. They affect soliton transmission seriously. It has been shown that the FDTD is an effctive method for analysis of the soliton transmission.
出处
《云南师范大学学报(自然科学版)》
2010年第1期48-52,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(10365002)
云南省自然科学基金资助项目(2004A028M)
国家自然科学基金重点项目(50734007)