期刊文献+

Maximum packing densities of basic 3D objects 被引量:7

Maximum packing densities of basic 3D objects
下载PDF
导出
摘要 Numerical simulation results show that the upper bound order of random packing densities of basic 3D objects is cube (0.78) > ellipsoid (0.74) > cylinder (0.72) > spherocylinder (0.69) > tetrahedron (0.68) > cone (0.67) > sphere (0.64), while the upper bound order of ordered packing densities of basic 3D objects is cube (1.0) > cylinder and spherocylinder (0.9069) > cone (0.7854) > tetrahedron (0.7820) > ellipsoid (0.7707) > sphere (0.7405); these two orders are significantly different. The random packing densities of ellipsoid, cylinder, spherocylinder, tetrahedron and cone are closely related to their shapes. The optimal aspect ratios of these objects which give the highest packing densities are ellipsoid (axes ratio = 0.8:1:1.25), cylinder (height/diameter = 0.9), spherocylinder (height of cylinder part/diameter = 0.35), tetrahedron (regular tetrahedron) and cone (height/bottom diameter = 0.8). Numerical simulation results show that the upper bound order of random packing densities of basic 3D objects is cube (0.78) 〉 ellipsoid (0.74) 〉 cylinder (0.72) 〉 spherocylinder (0.69) 〉 tetrahedron (0.68) 〉 cone (0.67) 〉 sphere (0.64), while the upper bound order of ordered packing densities of basic 3D objects is cube (1.0) 〉 cylinder and spherocylinder (0.9069) 〉 cone (0.7854) 〉 tetrahedron (0.7820) 〉 ellipsoid (0.7707) 〉 sphere (0.7405); these two orders are significantly different. The random packing densities of ellipsoid, cylinder, spherocylinder, tetrahedron and cone are closely related to their shapes. The optimal aspect ratios of these objects which give the highest packing densities are ellipsoid (axes ratio = 0.8 : 1 : 1.25), cylinder (height/diameter = 0.9), spherocylinder (height of cylinder part/diameter = 0.35), tetrahedron (regular tetrahedron) and cone (height/bottom diameter = 0.8).
出处 《Chinese Science Bulletin》 SCIE EI CAS 2010年第2期114-119,共6页
基金 supported by the National Natural Science Foundation of China (Grant No.10772005) National Basic Research Program of China (Grant No. 2007CB714603)
关键词 三维物体 堆积密度 随机堆积 四面体 数值模拟 封装密度 立方体 圆柱体 packing, particle, nonspherical particle, cylinder, cone, spherocylinder, tetrahedron
  • 相关文献

参考文献4

二级参考文献37

  • 1Hoylman D J 1970 Mathematical Society 76 135
  • 2Conway J H and Torquato S 2006 Proc. Natl. Academy Sciences 103 10612
  • 3Chaikin P, Wang S, Jaoshvili A 2007 APS March Meeting (American Physical Society 5-9 March 2007)
  • 4Dong Q and Ye D N 1993 Chin. Sci. Bull. 38 54
  • 5Latham J P, Lu Y and Munjiza A A 2001 Geotechnique 51 871
  • 6Nolan G T and Kavanagh P E 1995 Powder Technology 84 199
  • 7Zhao L, Li S X and Liu Y W 2007 Chin. J. Computat. Phys. 24 625
  • 8He D, Ekere N N and Cai L 1999 Phys. Rev. E 60 7098
  • 9Donev A, Torquato S and Stillinger F H 2005 J. Comput. Phys. 202 737
  • 10Weltz D A 2004 Science 303 968

共引文献12

同被引文献57

  • 1谢亮亮,屠大维,张旭,肖国梁,金攀.深海原位激光扫描双目立体视觉成像系统[J].仪器仪表学报,2020,41(6):106-114. 被引量:18
  • 2罗久飞,邱广,张毅,冯松,韩冷.基于自适应双阈值的SURF双目视觉匹配算法研究[J].仪器仪表学报,2020,41(3):240-247. 被引量:42
  • 3崇爱新,尹辉,刘艳婷,刘秀波,许宏丽.基于双目视觉的无缝线路钢轨纵向位移测量方法研究[J].仪器仪表学报,2019,40(11):82-89. 被引量:24
  • 4LU Peng, LI ShuiXiang , ZHAO Jian & MENG LingYi State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics & Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China.A computational investigation on random packings of sphere-spherocylinder mixtures[J].Science China(Physics,Mechanics & Astronomy),2010,53(12):2284-2292. 被引量:2
  • 5Donev A, Cisse I, Sachs D, et al. Improving the Density of Jammed Disordered Packing Using Ellipsoids[J]. Science, 2004, 303(5660): 990-993.
  • 6Frenkel D, Mulder B M. The Hard Ellipsoid-of- evolution Fluid I. Monte Carlo simulations[J]. Molecular Physics, 1985, 55(5): 171-1192.
  • 7Samborski AG, Evans GT, Mason CP, et al. The Isotropic to Nematic Liquid Crystaltransition for Hard Ellipsoids: an Onsager-Like Theory and Computer Simulations[J]. Molecular Physics, 1994, 81(2): 263-276.
  • 8Donev A, Stillinger FH, Chaikin PM, et al. Unusually Dense Crystal Packings of Ellipsoids[J]. Physical Review Letters, 2004, 92(25): 255506-4.
  • 9Donev A, Torquato S, Stillinger FH. Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles[J]. I. Algorithmic Details. Journal of Computational Physics, 2005, 202(2): 737-764.
  • 10Donev A, Torquato S, Stillinger FH. Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles. II. Applications to Ellipse and Ellipsoids[J]. Journal of Computational Physics, 2005, 202(2): 765-793.

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部