期刊文献+

基于弯曲测试技术的纳米梁厚度的精密测量 被引量:1

Precision Measurement of Nanobeam Thickness Using Bending Test
下载PDF
导出
摘要 针对广泛应用的扫描电镜和台阶仪在测量纳米厚度时存在的破坏性和近似性等局限性,提出了一种基于弯曲测试技术实现纳米梁厚度精密测量的方法.该方法的核心思想是悬浮结构在载荷的作用下产生初始弯曲直至其下表面与衬底接触的过程中形成的载荷-位移曲线会出现斜率明显不同的两个直线段,其交点代表了悬浮结构下表面与衬底之间的初始接触,由此可测量出该悬浮结构下表面与衬底之间的间隙,从而间接得到结构的厚度值.分别采用原子力显微镜(AFM)和纳米压痕仪作为测试平台对单晶硅固支纳米梁进行了厚度测量,两种测量仪器得到了一致性较好的测量结果.讨论了测量随机误差、系统误差以及数据计算误差等对测试结果的影响和相应的误差降低方法. As nano thickness measurement with SEM and sidestep apparatus has the limitation of approximation and destructive effect, a precise measurement method for nanobeam thickness based on bending test was proposed. The key point of the proposed method is that a turning point will show up in the forcedisplacement curve of the suspending nanobeam under a load force when the lower surface of the beam contacts the substrate. The relative distance between the initial bending point and the turning point is the gap between the lower surface of the nanobeam and the substrate, and the thickness of the suspending nanobeam can be calculated consequently. Thickness of single-crystal silicon clamped nanobeam was measured using AFM and nanoindenter, which shows consistent measuring results. Effect of the random error, system error and calculation error on the measurement and corresponding ways to cure the errors have also been discussed.
出处 《纳米技术与精密工程》 EI CAS CSCD 2010年第1期7-11,共5页 Nanotechnology and Precision Engineering
基金 科技部国际科技合作与交流专项资助项目(2008DFA71610) 国家自然科学基金重点资助项目(50535030)
关键词 纳米梁 厚度 原子力显微镜 纳米压痕 弯曲测试 nanobeam thickness atomic force microscope nano indentation bending test
  • 相关文献

参考文献8

  • 1Cimalla V, Niebelschtitz F, Tonisch K, et al. Nanoelectromechanical devices for sensing applications [ J ]. Sensors and Actuators B: Chemical, 2007, 126( 1 ) : 24-34.
  • 2Chan W K, Luo M, Zhang T Y. Molecular dynamics simulations of four-point bending tests on SiC nanowires [ J ]. Scripta Materialia, 2008, 59(7): 692-695.
  • 3Lu Chunsheng. On the bending strength of ZnO nanowires [J]. Physics Letters A, 2008, 372(39) : 6113-6115.
  • 4Kim M S, Choi J H, Park Y K. Calibration of the spring constants of various AFM cantilevers with the small uncertainty level of 2% [ C ] // 2006 SICE-ICASE International Joint Conference. Busan, Korea, 2006 : 2532-2537.
  • 5Gibson T C, Smith D A, Roberts C J. Calibration of silicon atomic force microscope cantilevers [ J ]. Nanotechnology, 2005, 16(2) :234-238.
  • 6Langlois E D, Shaw G A, Kramar J A, et al. Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard [ J ]. Review of Scientific Instruments, 2007, 78(9) : 1-10.
  • 7Gates R S, Pratt J R. Prototype cantilevers for SI-traceable nanonewton force calibration [ J ]. Institute of Physics Publishing, 2006, 17 (10) : 2852-2860.
  • 8史立秋,孙涛,闫永达,董申.基于AFM纳米硬度测量系统的实验(英文)[J].纳米技术与精密工程,2006,4(2):146-150. 被引量:4

二级参考文献11

  • 1[1]Bhushan B,Koinkar V N.Nano-indentation hardness measurements using atomic force microscopy[J].American Institute of Physics,1994,64 (13):1653-1655.
  • 2[2]Marshall G W Jr,Balooch M,Gallagher R R,et al.Mechanical properties of the dentinoenamel junction:AFM studies of nanaohardness,elastic modulus and fracture[J].Journal of Biomedical Materials Research,2000,54:87-95.
  • 3[3]Kojim I,Xu W T,Fujimoto T.Nanohardness measurement of carbon nitride thin films[J].Surf Interface Anal,2001,32:74-78.
  • 4[4]Hua W S,Wu X F,Shen D H,et al.Nanohardness and elastic modulus at the inteffacearch of Ti/NiAl composites determined by the nanoindentation technique[J].Surf Interface Anal,2004,36:143-147.
  • 5[5]Oliver W C,Pharr G M.Measurement of hardness and elastic modulus by instrumented indentation:Advance in understanding and refinements to methodology[J].J Mater Res,2004,19(1):3-20.
  • 6[6]Zhang T H.Micron/Nanometer Mechanical Test Technology and Application[M].Beijing:China Machine Press,2005.
  • 7[7]Nix W D,Gao H J.Indentation size effects in crystalline materials:A law for strain gradient plasticity[J].J Mech Phys Solids,1998,46(3):411-425.
  • 8[8]Huo D H,Liang Y C,Cheng K,et al.Nanoindentafion tests on single crystal copper thin film with an AFM[J].Journal of Harbin Institute of Technology (New Series),2003,10(3):408-412.
  • 9[9]Fleck N A,Hutchinson J W.Strain gradient plasticity[J].Advances in Applied Mechanics,1997,3:295-361.
  • 10[10]Gao H,Huang Y,Nix W D,et al.Mechanism-based strain gradient plasticity-Ⅰ:Theory[J].J Mech Phys Solids,1997,47:1239-1263.

共引文献3

同被引文献9

  • 1胡小唐,李源,饶志军,胡春光,傅星.纳机电系统[J].纳米技术与精密工程,2004,2(1):1-7. 被引量:10
  • 2樊康旗,贾建援,王卫东.AFM针尖“突跳”研究[J].中国机械工程,2007,18(3):339-343. 被引量:3
  • 3Sundarajan S,Bhushan B.Development of AFM-based techniques to measure mechanical properties of nanoscale structures[J].Sensors and Actuators A:Physical,2002,101(3):338-351.
  • 4Ryder S,Lee Ki B,Meng Xiaofan,et al.AFM characterization of out-of-plane high frequency microresonators[J].Sensors and Actuators A:Physical,2004,114(2/3):135-140.
  • 5Teva J,Abadal G,Davis Z J,et al.On the electromechanical modelling of a resonating nano-cantilever-based transducer[J].Ultramicroscopy,2004,100(3/4):225-232.
  • 6Davis J Z,Boisen A.Aluminum nano-cantilevers for high sensitivity mass sensors[C] // Proceedings of 2005 5th IEEE Conference on Nanotechnology.Nagoya,Japan,2005:293-296.
  • 7Li Xiaodong,Bhushan B.Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoidentation techniques[J].Surface and Coatings Technology,2003,163/164:521-526.
  • 8屈钧娥,王海人,郭兴蓬,杨丽霞.硫醇自组装膜在金表面吸附行为的AFM力曲线研究[J].仪器仪表学报,2007,28(9):1624-1628. 被引量:3
  • 9徐临燕,栗大超,邱晗,胡小唐,赵大博.基于显微激光多普勒的纳结构振动特性测试[J].光电子.激光,2008,19(6):781-785. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部