摘要
In this paper, we investigate the Ishikawa iteration process in a p -uniformly smooth Banach space X . Motivated by Deng and Tan and Xu , we prove that the Ishikawa iteration process converges strongly to the unique solution of the equation Tx=f when T is a Lipschitzian and strongly accretive operator from X to X , or to the unique fixed point of T when T is a Lipschitzian and strictly pseudo contractive mapping from a bounded closed convex subset C of X into itself. Our results improve and extend Theorem 4.1 and 4.2 of Tan and Xu by removing the restrion lim n→∞β n=0 or lim n→∞α n= lim n→∞β n=0 in their theorems. These also extend Theorems 1 and 2 of Deng to the p -uniformly smooth Banach space setting.
本文研究p一致光滑Banach空间X中Ishikawa迭代法.受Deng[6]与Tan,Xu[8]的启发,证明了,当T是从X到自身的Lipschitz强增生算子时,Ishikawa迭代法强收敛到方程Tx=f的唯一解;当T是从X的有界闭凸子集到自身的Lipschitz严格伪压缩映象时,Ishikawa迭代法强收敛到T的唯一不动点.通过去掉限制limn→∞βn=0或limn→∞αn=limn→∞βn=0,结果改进与推广了Tan,Xu[8]的定理4.1与定理4.2,也把Deng[6]的定理1与定理2推广到了p一致光滑Banach空间的背景.