摘要
本文证明了:Banach空间上完全分配格代数间的导子都是自动连续的;进而证明了套代数的可加导子是内的,套代数间的代数同构是自动连续的。
In this paper, we prove that every derivation of completely distributive subspace lattice algebra on Banach spaces is continuous, and obtain that additive derivations of nest algebras on Banach spaces are inner. We also prove that every isomorphism between nest algebras on Banach spaces is continuous and in addition is spatial.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1998年第5期1003-1006,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
关键词
套代数
导子
代数同构
自反算子代数
Completely distributive subspace lattice algebra, Nest algebra, Isomorphism, Derivation