期刊文献+

指数衰减下的KFDA方法及其人脸识别 被引量:1

Face Recognition Based on Kernel Fisher Discriminant Analysis under Exponential Decay
下载PDF
导出
摘要 预先对人脸图像进行离散小波变换来尽量消除对识别无关的信息,以达到在提高识别率的同时有效降低时间复杂度,同时为了抑制光照的影响,还引入了一种对图像灰度进行指数衰减的图像预处理策略。通过在Yale人脸库上进行试验表明,结合以上预处理的核Fisher鉴别分析(Kernel Fisher Discriminant Analysis,KFDA)方法有着比传统KFDA方法以及当前较好的零空间KFDA方法更好的识别率。 Discrete wavelet transformation was firstly used to eliminate the information which was not related to the identification in order to improve the recognition rate and effectively reduce the time complexity. To inhibit the effects of light, a strategy to pre-process the attenaution image was introduced. The experimental results, based on Yale database face, show that the combination of the above methods to deal with the KFDA has a better performance than traditional KFDA and the current zero KFDA.
出处 《广东工业大学学报》 CAS 2009年第4期62-64,87,共4页 Journal of Guangdong University of Technology
关键词 核Fisher鉴别分析方法 零KFDA 指数衰减 人脸识别 kernel Fisher discriminant analysis zero KFDA exponential decay face recognition
  • 相关文献

参考文献5

二级参考文献28

  • 1Fisher R A. The Statistical Utilization of Multiple Measurements. Annals of Eugenics, 1938, 8: 376- 386
  • 2Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher Discriminant Analysis with Kernels. In: Proc of the IEEE Neural Networks for Signal Processing Workshop, Madison, 1999, 41 - 48
  • 3Scholkopf B, Mika S, et al. Input Space Versus Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000- 1017
  • 4Weston J, Watkins C. Support Vector Machines for Multi-Class Pattern Recognition. In: Proc of 7th European Symposium on Artificial Neural Networks, Bruges, Belgium, 1999, 219- 224
  • 5Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors. IEEE Trans on Computers, 1975, 24(3) : 281 - 289
  • 6Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation, 2000, 12 : 2385 - 2404
  • 7Belhumeur P N,Hespanha J P,Kriegman D J.Eigsnfaces vs.Fisherfaces:Recognition using class special linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711 -720.
  • 8Daniel L S,Weng J.Using discriminant eigenfeatures for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831 -836.
  • 9Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[A].In:Proceedings of IEEE International Workshop on Neural Networks for Signal Processing Ⅸ[C],Madison,Wisconsin,USA,1999:41 -48.
  • 10Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.

共引文献40

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部