期刊文献+

基于SVM特征选择的整经轴数预测算法 被引量:3

Prediction Algorithm of Trim Beam Number Using Modified SVM-Based Feature Selection
下载PDF
导出
摘要 提出了一种基于改进支持向量机(SVM)特征选择算法及神经网络的整经轴数预测算法,该算法采用改进SVM算法选择影响整经轴数的关键特征,在此基础上利用前馈神经网络获得整经轴数的预测值.在数值计算及实际制造企业的应用效果表明该算法有效,能满足实际棉纺生产过程整经轴数预测的需要. The trim beam number is an important parameter in the scheduling model of the cotton spinning manufacturing process. Because of the complexity of the trim technique, the actual trim beam number is difficult to obtain before scheduling. A prediction algorithm using a modified support vector machine (SVM)-based feature selection method and feed forward neural network (FFNN) is presented for predicting the trim beam number. In the algorithm, the proposed feature selection method is adopted to pick up critical features that affect the trim beam number, and FFNN is adopted to predict the trim beam number based on the critical features. Numerical computational results show that the proposed algorithm is effective. The algorithm also successfully applies in the related problems in practical cotton textile manufacturing system.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第6期88-92,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划项目(2006AA04Z163) 国家重点基础研究发展计划项目(2002CB312202 2009CB320602) 国家自然科学基金项目(60834004 60721003) 教育部新世纪优秀人才支持计划项目
关键词 支持向量机 整经轴数 特征选择 预测 调度 support vector machine trim beam number feature selection prediction scheduling
  • 相关文献

参考文献10

二级参考文献101

  • 1[4]Bilski J L,Rutkowski L.A fast training algorithm for neuralne tworks[J].IEEE Transactions on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing,1998,15(6):749-753.
  • 2[1]Exner O.How to get wrong results from good experimental data:a survey of incorrect applications of regression[J].Journal of Physical Organic Chemistry,1997,10 (11):797-813.
  • 3[4]Duda R O,Hart P E,Stork D G.Pattern classification[M].New York:John Wiley & Sons,2001.
  • 4[5]Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 5[6]Gunn S R.Support vector machines for classification and regression[R].Southapton:Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 6[7]Barzilay Brailovsky V L.On domain knowledge and feature selection using a support vector machine[J].Pattern Recognition Letters,1999,20(5):475-484.
  • 7[8]Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(1):389-422.
  • 8[1]HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 9[2]KIJSIRKUL B,USSIVAKUL N.Multiclass support vector machines using adaptive directed acyclic graph[A].Proceedings of the 2002 International Joint Conference on Neural Networks[C].Honolulu,HI,USA,2002,1(5):980-985.
  • 10[3]PHETKAEW T,KIJSIRIKUL B,RIVEPIBOON W.Reordering adaptive directed acyclic graphs:an improved algorithm for multiclass support vector machines[A].Proceedings of the 2003 International Joint Conference on Neural Networks[C].Portland,OR,USA,2003.

共引文献58

同被引文献22

  • 1芦涛,王成儒,韩笑蕾.基于SVM的汉语语音情感识别研究[J].电子测量技术,2007,30(3):20-21. 被引量:5
  • 2Wei H L, Billings S A. Feature subset selection and ranking for data dimensionality reduction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1) : 162-166.
  • 3Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53: 23-69.
  • 4Guyon I, Weston J, Barnhill S, etal. Gene selection for cancer classification using support vector machines [ J ]. Machine Learning, 2002, 46 (1-3) : 389-422.
  • 5Liu J, Ranka S, Kahveci T. Classification and feature selection algorithms for multi-class CGH data[ J]. Bioinformatics, 2008, 24: 186-195.
  • 6Huang J, Cai Y, Xu X. A hybrid genetic algorithm for feature selection wrapper based on mutual information [ J].Pattern Recognition Letters, 2007, 28 : 1825-1844.
  • 7Tax D M J, Duin R P W. Support vector domain description [ J ]. Pattern Recognition Letters, 1999, 20 (11-13) : 1191-1199.
  • 8胡航.语音信号处理[M].哈尔滨:哈尔滨工业大学出版社.2007.
  • 9DONOHO D, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [ J]. Biometrika,2004,81 (3) :425-455.
  • 10CHEN S H,WANG J F. Speech enhancement using per- ceptual wavelet packet decomposition and teager energy operator [ J]. Journal of VLSI Signal Processing, 2004, 36(2/3) : 125-139.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部