期刊文献+

CONTROL OF ROBOT DRIVEN BY MULTIPLE ULTRASONIC MOTORS BASED ON ROBUST PARAMETER DESIGN 被引量:3

基于鲁棒性参数设计法的多超声电机驱动机器人的控制(英文)
下载PDF
导出
摘要 An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs. 由于超声电机复杂的能量转换机制和参数受温度和工作环境影响的非线性变化,使得很难对超声电机进行数学描述。为了使超声电机驱动的多关节机器人有较好的表现性能,根据超声电机的运动特点,提出了一种新颖的速度——位置双闭环反馈控制方式。鉴于该控制方式需要调节的控制参数有18个,为了获得一组具有鲁棒性的控制参数,选用了鲁棒性参数设计法。实践结果表明,所提出的控制方式能够获得机器人的良好运行性能,鲁棒性参数设计对超声电机而言是有效而方便的。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期243-250,共8页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(50675098,50735002)~~
关键词 ultrasonic transducers robust control proportional integral derivative (PID) control position-veloci-ty feedback 超声转换器 鲁棒控制 PID控制 位置-速度反馈
  • 相关文献

参考文献1

二级参考文献14

  • 1巫庆辉,邵诚.基于递归型小波神经网络的感应电动机伺服驱动系统自适应控制[J].机械工程学报,2005,41(2):71-76. 被引量:4
  • 2BAILAK G V, RUBINGER B, JANG M, et al. Advanced robotic mechatronics system: Emerging technologies for interplanetary robotics[C]// Canadian Conference on Electrical and Computer Engineering, May 2-5, 2004, Niagara Falls, Ontario, Canada. Dundas: IEEE, 2004: 2 025-2 028.
  • 3JANG M, DAWSON F, BAILAK G. Control system tor multiple joint robotic arm powered by ultrasonic motor[C]// Applied Power Electronics Conference and Exposition, APEC'04. Nineteenth Annual IEEE, February 22-26, 2004, Anaheim California, America. Piscataway, New Jersey: IEEE, 2004:1 844-1 848.
  • 4ZHANG Q, BENVENISTE A. Wavelet networks[J]. IEEE Transaction on Neural Networks, 1992, 3(6): 889-898.
  • 5XIA Changliang, TIAN Yang, LIU Dan, et al. Speed control ofbrushless DC motor based on single neuron PID and wavelet neural network[C]// IEEE International Conference on Control and Automation, May 30-Jtme 1, 2007, Guangzhou, China. Singapore: IEEE, 2007: 617-620.
  • 6HUI Li, HONG Zhangjin, CHEN Guo. PID control based on wavelet neural network identification and tuning and its application to fin stabilizer[C]//Proceedings of the IEEE International Conference on Mechatronics & Automation, July 29-Aug. 1, 2005, Ontario, Canada. Ontario: IEEE, 2005: 1 907-1 911.
  • 7HUI Li, CHEN Guo, HONG Zhangjin. Hybrid control of inverse model wavelet neural network and PID and its application to fin stabilizer[C]// Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China, 2006: 436-440.
  • 8WAI R J, CHANG J M. Intelligent control of induction servo motor drive via wavelet neural network [J]. Electric Power Systems Research, 2002, 61.- 67-76.
  • 9ASHRAF M H. Wavelet neural network load frequency controller [J]. Energy Conversion and Management, 2005, 46: 1 613-1 630.
  • 10JAMES C, CHEN G, OGMEN H. Fuzzy PID controller: Design, performance evaluation, and stability analysis[J] Information Sciences, 2000, 123(3-4).. 249-270.

共引文献9

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部