期刊文献+

基于小波变换和规范型纹理描述子的人耳识别 被引量:12

Ear Recognition Based on Wavelet Transform and Uniform Texture Descriptors
下载PDF
导出
摘要 在带有角度的人耳图像上提取有效特征一直是人耳识别的难点.本文提出一种基于Haar小波变换和规范型纹理描述子的人耳识别方法,即先对人耳图像进行Haar小波变换,然后利用更加合理的规范型纹理描述子,同时结合分块与多分辨率思想,共同描述经Haar小波变换后人耳子图像的纹理特征,最后用最近邻分类器进行分类识别.实验结果表明,Haar小波变换可以有效增强图像纹理基元的有效信息;利用规范型纹理描述子提取特征不仅速度快,而且具有很强的鲁棒性,尤其与分块、多分辨率方法相结合时,效果更为显著,明显优于经典的PCA和KPCA方法. It has been an intractable problem for ear recognition to extract effective features from the posed ear images.This paper proposes a novel method based on Haar wavelet transform and uniform texture descriptors.Firstly,ear images are decomposed by Haar wavelet transform.Then using more rational uniform texture descriptors and combining simultaneously with block-based method and multi-resolution method describe together the texture features of ear sub-images transformed by Haar wavelet.Finally,the texture features are classified by the nearest neighbor method.Experimental results show that Haar wavelet transform can boost effectively up intensity information of texture unit.It is not only fast but also robust to use uniform texture descriptors to extract texture features.The recognition rate outperforms remarkably than that of the classic PCA or KPCA,especially when thinking block-based method and multi-resolution method into account.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第1期239-243,共5页 Acta Electronica Sinica
关键词 HAAR小波变换 规范型纹理描述子 人耳识别 分块 多分辨率 Haar wavelet transform uniform texture descriptors ear recognition block-based multi-resolution
  • 相关文献

参考文献11

  • 1M Choras. Ear biometrics based on geometrical feature extraction[J]. Electronic Letters on Computer Vision and Image Analysis,2005,5(3) :84 - 95.
  • 2B Victor, K Bowyer, S Sarkar. An evaluation of face and ear biometdc [A ]. Proceedings of 16th International Conference Pattern Recognition[ C]. Canada, Quebec, 2002.429 - 432.
  • 3Haralick R, Shanmugam K, Dinstein I. Texture feature for image classification[ J].IEEE Transactions on Systems,Man, and Cybernetics, 1973,3(6) :610 - 621.
  • 4Manjunath B, Ma W. Texture features for browsing and retrieval of image data[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 ( 8 ) : 837 - 842.
  • 5Halwood D, Ojala T, Pietikanen M, Kelman S, Davis S. Texture classification by center-symmetric auto-correlation, using Kull- back discrimination of distributions[R]. Computer Vision Laboratory, Center for Automation Research, University of Maryland, College Park,Maryland. CAR-TR-678.
  • 6Ojala T, Pietiklinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[J] .Pattern Recognition, 1996,29( 1 ) :51 - 59.
  • 7He D C, Wang L. Texture features based on texture spectrum [J]. Pattern Recognition, 1991,24 (5) : 391 - 399.
  • 8李晓华,沈兰荪.基于小波压缩域的统计纹理特征提取方法[J].电子学报,2003,31(z1):2123-2126. 被引量:8
  • 9Timo Ojala, Kimmo Valkealahti, Erkki Oja, Matti Pietikainen. Texture discrimination with multidimensional distributions of signed gray-level differences [J]. Pattern Recognition, 2001,34 (3) :727 - 739.
  • 10Valtteri Takala, Timo Ahonen, Matti Pietikainen. Block-based methods for image retrieval using local binary patterns [A]. Proceeding on the 14th Scandinavian Conference on Image Analysis [ C ]. Finland, Joensuu, 2005.882 - 891.

二级参考文献12

  • 1[3]Daugman J G. An information-theoretic view of analog representation in striate cortex [ A ]. Schwartz, E. Computational Neuroscience [ C ].Cambridge: MIT Press, 1990.403 - 423.
  • 2[4]Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 837 - 842.
  • 3[5]Mallat S. A theory for multiresolutional signal decomposition: the wavelet representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7): 674 - 693.
  • 4[6]Chang T, Kuo C C J. Texture analysis and classification with tree-structured wavelet transform [ J ]. IEEE Trans. Image Processing, 1993, 2(4) :429 - 441.
  • 5[8]Van de Wouwer G, Scheunders P, Van Dyck D. Statistical texture characterization from discrete wavelet representations [ J ]. IEEE Transactions on Image Processing, 1999,8(4) :592 - 598.
  • 6[10]Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients [ J ]. IEEE Transactions on Signal Processing, 1993, 41 (12):3445- 3462.
  • 7[11]Portilla J, Simoncelli E P. A parametric texture model based on joint statistics of complex wavelet coefficients [ J ]. International Journal of Computer Vision,2000,40( 1 ) :49 - 70.
  • 8[12]Haralick R M, Shanmugam K, Dinstein I. Textural feature for image classification [ J ]. IEEE Trans. on Systems, Man, and Cybernetics,1973,3(6) :610 - 621.
  • 9[14]Charalampidis D, Kasparis T. Wavelet-based rotational invariant roughness features for texture classification and segmentation [ J ]. IEEE Transactions on Image Processing,2002,11 (8): 825 - 837.
  • 10徐朝伦,王晓湘,柯有安.基于子波变换的纹理图像分类[J].电子科学学刊,1999,21(3):404-407. 被引量:4

共引文献7

同被引文献140

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部