期刊文献+

风电场功率预测物理方法研究 被引量:187

Study on the Physical Approach to Wind Power Prediction
原文传递
导出
摘要 对风电场输出功率进行预测是增加风电接入容量、提高电力系统运行安全性与经济性的有效手段,风电场功率预测的物理方法不受历史数据的限制,可用于新建风电场的功率预测。对基于物理原理的风电场功率预测方法进行研究,提出了适用于工程应用的预测方法,该方法采用解析原理分析风电场局地效应与风电机组尾流影响,具有鲁棒性强、计算时间短等特点。通过与某风电场实测功率比较,表明预测方法可以实现对风电场各种典型出力方式的预测,整体预测与逐点预测的准确性满足功率预测的工程应用要求。受数值天气预报(numerical weather prediction,NWP)计算网格分辨率与模式的影响,预测方法对风电场输出功率快速变化的预测能力相对较差,提高NWP数据的准确性是改善预测结果的有效手段。 Wind power prediction is a very effective way to increase the wind power penetration and improve the security and economy of the power system, Wind power prediction based on physical principle is independent on the measured data, which is very suitable to the newly-built wind farms. This paper studied on the short term wind power prediction based on physical principle, a prediction approach for engineering application was presented. An analytic principle was employed to analyze the local effect of wind farm and wake effect of wind turbines. The predicted wind power was compared with the measured power output of a study wind farm, under the typical wind power output. The result shows that the prediction approach can predict the typical power output very well, and the precision of global prediction and point-by-point prediction can meet the requirement of engineering application. Because of the limitation of numerical weather prediction (NWP) model and grid resolution, the prediction result is not very good when the wind changes drastically; it could improve the prediction result when a more accurate NWP data is employed.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第2期1-6,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50847042) "十一五"国家科技支撑计划重大项目(2008BAA14B03) 国家电网公司科技项目(JHZ200813)~~
关键词 风电场 功率 预测 物理方法 wind farm wind principle power prediction physical
  • 相关文献

参考文献21

  • 1KariniotakisG, MayerD, MoussafirJ. ANEMOS: development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms[C]. European Wind Energy Conference & Exhibition, Madrid, Spain, 2003.
  • 2Giebel G, Landberg L, Kariniotakis G. State-of-the-art on methods and software tools for short-term, prediction of wind energy production[C]. European Wind Energy Conference & Exhibition, Madrid, Spain, 2003.
  • 3Yiannis G, Dimitis G, Vaggelis P. Coupling of a mesoscale atmospheric prediction system with a CFD microclimatic model for production forecasting of wind farms in complex terrain: test case in the island of evia[C]. European Wind Energy Conference & Exhibition, Athens, Greece, 2006.
  • 4Giebel G, Badger J, Marti Perez I. Short-term forecasting using advanced physical modeling-the results of the anemos project results from mesoscale, microscale and CFD modelling[C]. European Wind Energy Conference & Exhibition, Athens, Greece, 2006.
  • 5Waldl H, Giebe G. The quality of a 48-hours wind power forecast using the german and danish weather prediction model[C]. Wind Power for the 21st Century, EUWEC Special Topic Conference, Kassel, Germany, 2000.
  • 6孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报,2008,28(14):112-117. 被引量:75
  • 7杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66. 被引量:131
  • 8潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. 被引量:221
  • 9杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 10范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:360

二级参考文献85

共引文献1054

同被引文献1935

引证文献187

二级引证文献2688

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部