期刊文献+

基于近红外视觉的机器人室外定位系统 被引量:7

Mobile Robot Localization in Outdoor Environments Based on Near-infrared Vision
下载PDF
导出
摘要 在光照条件可变且存在电磁干扰的环境下,针对机器人室外导航任务,提出了一种基于全景近红外视觉和编码路标的自定位系统.通过近红外光源照明,利用全景视觉识别采用条形编码格式的路标,并利用扩展卡尔曼滤波算法(EKF)融合视觉数据和里程计数据,从而实现机器人自定位.实验证明,该方法消除了室外大范围导航时光照变化对机器人定位结果的影响. A self-localization system based on near-infrared vision and bar-coded landmarks for robot navigating in outdoor environment with variable light conditions and electromagnetic interference is presented. The near-infrared illuminator and omni-directional vision are used for recognizing bar-coded landmarks. Data from vision system and odometry are fused with an extended Kalman filter (EKF) to realize robot self-localization. The experiment result demonstrates that the proposed method eliminates the effect of light variations on robot localization in outdoor long-range navigation.
出处 《机器人》 EI CSCD 北大核心 2010年第1期97-103,共7页 Robot
基金 国家863计划资助项目(2006AA040203) 国家自然科学基金资助项目(60775062) 新世纪优秀人才支持计划资助项目(NCET-07-0538)
关键词 移动机器人 室外定位 近红外 传感器融合 mobile robot outdoor localization near-infrared sensor fusion
  • 相关文献

参考文献13

  • 1Betke M, Gurvits L. Mobile robot localization using landmarks[R]. Germany: Siemens Corporate Research, 1993.
  • 2Blaer P, Allen E Topological mobile robot localization using fast vision techniques[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1031-1036.
  • 3Agrawal M, Konolige K, Bolles R C. Localization and mapping for autonomous navigation in outdoor terrains: A stereo vision approach[C]//IEEE Workshop on Applications of Computer Vision. Piscataway, NJ, USA: IEEE, 2007, 6p.
  • 4Weiss C, Tamimi H, Masselli A, et al. A hybrid approach for vision-based outdoor robot localization using global and local image features[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 1047-1052.
  • 5Takiguchi J I, Takeya A, Nishiguchi K, et al. A study of autonomous mobile system in outdoor environment[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2001: 1117-1123.
  • 6Agrawal M, Konolige K. Real-time localization in outdoor environments using stereo vision and inexpensive GPS[C]//International Conference on Pattern Recognition. Piscataway, NJ, USA: IEEE, 2006: 1063-1068.
  • 7Thrun S. Probabilistic algorithms in robotics[J]. AI Magazine, 2000, 21(4): 93-109.
  • 8Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
  • 9Serra J. Image analysis and mathematical morphology[M]. New York, USA: Academic Press, 1984.
  • 10Newman P M. On the solution to the simultaneous localization and map building problem[D]. Australian: Australian Centre for Field Robotics, University of Sydney, 1999.

二级参考文献14

  • 1Tardos J D, Neira J, Newman P, et al. Robust mapping and localization in indoor environments using sonar data[J]. The International Journal of Robotics Research, 2002, 21(4): 311-330.
  • 2Guivant J, Nebot E, Balker S. Localization and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17(10): 565-583.
  • 3Se S, Lowe D G, Little J J. Vision-based global localization and mapping for mobile robots[J]. IEEE Transactions on Robotics,2005, 21(3): 364-375.
  • 4Davison A J. Real-time simultaneous localisation and mapping with a single camera[A]. Proceedings of the IEEE International Conference on Computer Vision[C]. Piscataway, NJ, USA: IEEE, 2003. 1403-1410.
  • 5Ishiguro H. Development of low-cost compact omnidirectional vision sensors and their applications[DB/OL]. http://www.ai.soc.i.kyoto-u.ac.jp/publications/98/98conf04.pdf, 1998.
  • 6Bunschoten R. Mapping and Localization from a Panoramic Vision Sensor[DB/OL]. http ://www. science.uva, nl/research/ias/alumni/ph. d.theses/theses/RolandBunschoten.pdf, 2003.
  • 7Andreasson H, Treptow A, Ducker T. Localization for mobile robots using panoramic vision, local features and particle filter[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2005. 3348-3353.
  • 8Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part Ⅰ[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110.
  • 9Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 10Zivkovic Z, Booij O. How did we built our hyperbolic mirror omnidirectional camera-practical issues and basic geometry[DB/OL]. http://staff.science.uva.nl/-zivkovic/Publications/trlAS-UVA-05- 04.pdf, 2005.

共引文献24

同被引文献100

引证文献7

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部