期刊文献+

柔性双轮平衡机器人的动力学建模与分析 被引量:10

Dynamic Modeling and Analysis of Flexible Two-Wheeled Balancing Robot
下载PDF
导出
摘要 提出了一种柔性双轮平衡机器人,其机身具有以一段弹簧作为弹性阻尼的被动俯仰旋转关节.运用拉格朗日方法建立了此机器人在平面运动的动力学模型.基于此模型,首先证明了柔性双轮平衡机器人在直立平衡点不稳定和局部可控.其次,分析了关节刚度对线性二次型最优姿态平衡控制系统的影响.结果显示,关节刚度减小在理论上能够加强系统的鲁棒性,却使得控制系统动态性能下降.本文提出的模型及相关分析为柔性双轮平衡机器人的设计和控制提供了一定理论依据. This paper presents a kind of FTWBR (flexible two-wheeled balancing robot). Its main body has a passive pitch-joint which contains a spring as elastic damping. The Lagrange approach is used to formulate the dynamic model of the robot moving in plane. Based on the model, it is proved firstly that FTWBR is unstable and locally controllable at upright equilibrium state. Secondly, the impact of joint-stiffness on the linear quadratic optimal posture balancing control system is analyzed. The result demonstrates that the decrease of the joint-stiffness will improve the robustness of the control system theoretically, but it degrades the dynamic performance of the control system. The proposed dynamic model and the analysis provide some theoretical basis for designing and controlling FTWBR.
机构地区 北京工业大学
出处 《机器人》 EI CSCD 北大核心 2010年第1期138-144,共7页 Robot
基金 国家863计划资助项目(2007AA04Z226) 国家自然科学基金资助项目(60774077) 北京市教委重点项目(KZ200810005002)
关键词 柔性 双轮平衡机器人 建模 可控性 动态性能 flexible two-wheeled balancing robot modeling controllability dynamic performance
  • 相关文献

参考文献13

  • 1Pathak K, Franch J, Agrawal S K. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization[J]. IEEE Transactions on Robotics, 2005, 21(3): 505-513.
  • 2Kim Y, Kim S H, Kwak Y K. Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot[J]. Journal of Intelligent and Robotic Systems, 2005, 44(1): 25-46.
  • 3Salerno A, Angeles J. A new family of two-wheeled mobile robots: Modeling and controllability[J]. IEEE Transactions on Robotics, 2007, 23(1): 169-173.
  • 4Ren T J, Chen T C, Chen C J. Motion control for a two-wheeled vehicle using a self-tuning PID controller[J]. Control Engineering Practice, 2008, 16(3): 365-375.
  • 5Grasser F, D' Arrigo A, Colombi S, et al. Joe: A mobile, inverted pendulum[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 107-114.
  • 6Ambrose R O, Savely R T, Goza M, et al. Mobile manipulation using NASA's robonaut[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2004: 2104-2109.
  • 7Thibodeau B J, Deegan P, Grupen R. Static analysis of contact forces with a mobile manipulator[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 4007-4012.
  • 8Segway Inc. Segway Human Transporter[OL]. [2009-02-25]. http://www.segway.com.
  • 9Jo S H, Massaquoi S G. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance[J]. Biological Cybernetics, 2004, 91(3): 188-202.
  • 10Spong M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1987, 109(4): 310-319.

同被引文献82

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部