期刊文献+

传统独立分量分析和变分贝叶斯独立分量分析的比较 被引量:4

Comparison of traditional independent component analysis with variational Bayesian independent component analysis
下载PDF
导出
摘要 通过试验比较了传统的独立分量分析(ICA)和变分贝叶斯独立分量分析(VbICA)在源信号分离中的能力,试验研究表明,无噪声环境下的盲源分离,两种方法都能得到很好的分离性能.然而,噪声环境下的源信号分离,变分贝叶斯独立分量明显优于传统独立分量分析,特别是随着噪声的增强,变分贝叶斯独立分量的优势就越明显.另外,变分贝叶斯独立分量可以估计源信号的数目,而传统独立分量分析往往事先假设源信号的个数已知,否则无法进行源信号分离. The capabilities of blind source separation (BSS) with the traditional independent component analysis(ICA) and with variational Bayesian independent component analysis(VbICA) were discussed and verified by the experiment, The experimental results show that both methods can give a satisfactory separation performance in a noise-free BSS. However the VbICA method is superior to the traditional ICA method in the noise BSS, especially in the lower signal-to-noise BSS. In addition, the VbICA method can estimate the optimal number of source signals. However the number of source signal is always assumed to be known in the traditional ICA, otherwise the source signals can not be separated.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2010年第1期114-119,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50775208) 河南省教育厅自然科学基金资助项目(2006C460005 2008C460003)
关键词 独立分量分析 变分贝叶斯独立分量 盲源分离 信源估计 independent component analysis(ICA) variational Bayesian independent component analysis(VblCA) blind source separation(BSS) estimation of signal sources
  • 相关文献

参考文献5

  • 1Choudrey R A. Variational methods for Bayesian independent component analysis [D]. UK: University of Ox- ford, 2002.
  • 2MacKay D J C. Probable networks and plausible prediction-a reviews of practical Bayesian methods of supervised neural networks [J]. Journal of Network Computation iu Neural Systems, 1995, 6:469 -505.
  • 3Miskin J W. Ensemble learning for independent component analysis[ D]. UK : University of Cambridge, 2000.
  • 4Bertrand Rivetl, Christian Jutten, Vincent Vigneron. Wavelet de-noising for blind source separation in noisy mixtures[J]. Lecture Notes in Computer Science, 2004, 3195:263-270.
  • 5李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22

二级参考文献8

  • 1[3]Tian X H,Lin J,Fyfe K R,et al.Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering[C]∥ 2003 Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP'03),2003.
  • 2[4]Rivet B,Vigneron V,Paraschiv-Ionescu A,et al.Wavelet de-noising for blind source separation in noisy mixtures[C]∥ Lecture Notes in Computer Science,2004,3195:263~270.
  • 3[5]Paraschiv-Ionescu A,Jutten C,Aminian K,et al.Wavelet denoising for highly noisy source separation[C]∥ 2002 IEEE International Symposium on Circuits and Systems (ISCAS 2002),2002.
  • 4[7]Cardoso J F,Souloumiac A.Blind beamforming for non-Gaussian signals[J].Radar and Signal Processing,IEE Proceedings F,1993,140(6):362~370.
  • 5[8]Ypma A.Learning methods for machine vibration analysis and health monitoring[D].Delft University of Technology,2001.
  • 6文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:154
  • 7张海军,温广瑞,屈梁生.一种提高诊断信息质量的方法[J].西安交通大学学报,2002,36(3):295-299. 被引量:15
  • 8宋友,柳重堪,李其汉.含噪振动信号中早期碰摩的故障检测研究[J].航空学报,2003,24(1):32-35. 被引量:8

共引文献21

同被引文献26

  • 1李志农,郝伟,韩捷,何永勇,褚福磊.噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):110-113. 被引量:22
  • 2甘武,孙云莲,蒲晓羽.用独立分量分析消除工频通信中的谐波干扰[J].电力系统通信,2005,26(2):25-28. 被引量:6
  • 3于志伟,苏宝库,曾鸣.小波包分析技术在大型电机转子故障诊断系统中的应用[J].中国电机工程学报,2005,25(22):158-162. 被引量:63
  • 4R.A.Choudrey.Variational methods for Bayesian independent component analysis[D].UniversityofOxford,2002.
  • 5T.W.Lee,M.S.Lewicki,andT.J.Sejnowski.ICAmixturemodelsforunsupervised classification and automatic context switching,in International Workshop on Independent Component Analysis,1999:209-214.
  • 6Tian X.H.,Lin J.,Fyfe,K.R.,Zuo,M.J.,Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering[C].Proceedings of2003IEEE International Conference on Acoustics,Speech,and Signal Processing,2003(2):245-248.
  • 7R.A.Choudrey&S.J.Roberts(2003).Variational Bayesian Mixture of Independent Component Analysers for Finding Self-Similar Areas in Images.Proceedings of ICA-2003,Nara,Japan,April2003.
  • 8R.A.Choudrey&S.J.Roberts(2003).Variational Mixture of Bayesian Independent Component Analysers.(pdf)Neural Computation15(1).Previously Technical Report October,2001.
  • 9Cardoso J-F.and Souloumiac A.Blind beamforming for non-Gaussian signals[J].Radar and Signal Processing,IEE Proceedings F,1993,140(6):362-370.
  • 10Shi Zhenwei, Tan Xueyan, Jiang Zhiguo, etal. Noisy blind source separation by nonlinear autocorrelation [ C ]. The 3 rd International Congress on Image and Signal Processing (CISP) ,2010 ,Yantai, China:7:3152 - 3156.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部