期刊文献+

基于径向基函数点云数据表面重建 被引量:2

下载PDF
导出
摘要 采用改进的隐式曲面重建模型,采用分层次重建思想和局部支撑的径向基函数相结合的重建算法,使其结合了局部和全局函数的优点,采用局部支撑径向基函数有效降低系统求解复杂度,分层方法可以有效处理残缺和非均匀点云数据。算法首先对点云数据进行层次划分,接着递归地将前一级的插值结果作为后一级的偏移,由粗糙到精细逐步改善重建结果。实验结果表明,算法简单易实施,重建效果良好。
机构地区 哈尔滨理工大学
出处 《黑龙江科技信息》 2010年第2期42-42,254,共2页 Heilongjiang Science and Technology Information
  • 相关文献

参考文献6

  • 1刘春,姚银银,吴杭彬.基于自适应紧支撑径向基函数的点云三维建模[J].地理与地理信息科学,2009,25(1):88-90. 被引量:6
  • 2吕方梅,习俊通,马登哲.基于径向基函数和自适应单元分解的大规模散乱点云快速重构[J].机械科学与技术,2007,26(10):1300-1303. 被引量:7
  • 3Holger Wendland.Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics . 1995 (1)
  • 4Carr JC,Beatson RK,Cherrie JB,et al.Reconstruction and representation of 3D objects with radial basis functions. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques . 2001
  • 5Bryan S. Morsel,Terry S. Yoo2,Penny Rheingans3, etl.Interpolating Implicit Surfaces From Scattered Surface Data Using Compactly Supported Radial Basis Functions. Proceedings of the International Conference on Shape Modeling and Applications(SMI ‘01) . 2001
  • 6Y. Ohtake,A. Belyaev,,H. P. Seidel."Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions,". Pro. Shape ModelingInternational 2004 . 2003

二级参考文献15

  • 1刘春,杨伟.三维激光扫描对构筑物的采集和空间建模[J].工程勘察,2006,34(4):49-53. 被引量:69
  • 2OHTAKE Y, BELYAEV A,SEIDEL H-R 3D scattered data approx imation with adaptive compactly supported radial basis func tions[A]. IEEE Computer Society[C]. 2004. 31-39.
  • 3CARR J ,BEATSON R,CHERRIE J. Reconstruction and representation of 3D objects with radial basis functions[A]. Proceeding of ACM SIGGRAPH 2001[C]. 2001.67-76.
  • 4WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree[J]. Advances in Computational Mathematics, 1995,4 : 389- 396.
  • 5OHTAKE Y, BELYAEV A, SEIDEL H-P. A multi scale ap proach to 3D scattered data interpolation with compactly supported basis functions[A]. IEEE Computer Soceity[C]. 2003. 153-161.
  • 6Franke R.Scattered data interpolation:tests of some methods[J].Mathematics of Computation,1982,38:181-200
  • 7Wendland H.Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree[J].Advances in Computational Mathematics,1995,4(1):389-396
  • 8Bryan S,et al.Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions[A].Proceedings of the International Conference on Shape Modeling and Applications[C],2001
  • 9Carr J C,et al.Reconstruction and representation of 3D objects with radial basis functions[A].In:Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,ACM Press,2001:67-76
  • 10Wendland H.Fast Evaluation of Radial Basis Functions:Methods Based on Partition of Unity Approximation Theory X:Abstract and Classical Analysis[M].Vanderbilt University Press,Nashville,2002

共引文献9

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部